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This manual documents release 1.2b4.

Abstract

This manual describes OOMMEF (Object Oriented Micromagnetic Framework), a
public domain micromagnetics program developed at the National Institute of Stan-
dards and Technology. The program is designed to be portable, flexible, and extensible,
with a user-friendly graphical interface. The code is written in C++ and Tcl/Tk. Tar-
get systems include a wide range of Unix, Windows, and Mac OS X platforms.
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Disclaimer

The research software described in this manual (“software”) is provided by NIST as a public
service. You may use, copy and distribute copies of the software in any medium, provided
that you keep intact this entire notice. You may improve, modify and create derivative works
of the software or any portion of the software, and you may copy and distribute such modifi-
cations or works. Modified works should carry a notice stating that you changed the software
and should note the date and nature of any such change. Please explicitly acknowledge the
National Institute of Standards and Technology as the source of the software.

The software is expressly provided ”AS IS.” NIST MAKES NO WARRANTY OF ANY
KIND, EXPRESS, IMPLIED, IN FACT OR ARISING BY OPERATION OF LAW, IN-
CLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA
ACCURACY. NIST NEITHER REPRESENTS NOR WARRANTS THAT THE OPER-
ATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR
THAT ANY DEFECTS WILL BE CORRECTED. NIST DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF THE SOFTWARE OR
THE RESULTS THEREOF, INCLUDING BUT NOT LIMITED TO THE CORRECT-
NESS, ACCURACY, RELIABILITY, OR USEFULNESS OF THE SOFTWARE.

You are solely responsible for determining the appropriateness of using and distributing
the software and you assume all risks associated with its use, including but not limited to
the risks and costs of program errors, compliance with applicable laws, damage to or loss
of data, programs or equipment, and the unavailability or interruption of operation. This
software is not intended to be used in any situation where a failure could cause risk of injury
or damage to property. The software was developed by NIST employees. NIST employee
contributions are not subject to copyright protection within the United States.

We would appreciate acknowledgement if the software is used. When referencing OOMMF
software, we recommend citing the NIST technical report, M. J. Donahue and D. G. Porter,
“OOMMEF User’s Guide, Version 1.0,” NISTIR 6376, National Institute of Standards and
Technology, Gaithersburg, MD (Sept 1999).

Commercial equipment and software referred to on these pages are identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

v



1 Overview of OOMMF

The goal of the OOMMF" (Object Oriented MicroMagnetic Framework) project in the Infor-
mation Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) is to develop a portable, extensible public domain micromagnetic program and as-
sociated tools. This code forms a completely functional micromagnetics package, with the
additional capability to be extended by other programmers so that people developing new
code can build on the OOMMEF foundation. The main contributors to OOMMF are Mike
Donahue and Don Porter.

OOMMF is written in C++, a widely-available, object-oriented language that can pro-
duce programs with good performance as well as extensibility. For portable user interfaces,
we make use of Tcl/Tk so that OOMMEF operates across a wide range of Unix, Windows,
and Mac OS X platforms.

The code may be modified at three distinct levels. At the top level, individual programs
interact via well-defined protocols across network sockets. One may connect these modules
together in various ways from the user interface, and new modules can interoperate by
supporting the same protocols. The second level of modification is at the Tcl/Tk script
level. Some modules allow Tcl/Tk scripts to be imported and executed at run time, and
the top level scripts are relatively easy to modify or replace. At the lowest level, the C++
source is provided and can be modified, although at present the documentation for this is
incomplete (cf. the “OOMMF Programming Manual”).

The current development version, OOMMEF 1.2, features Oxs, the OOMMEF eXtensible
Solver. Oxs offers users of OOMMEF the ability to extend Oxs with their own modules. The
extensible nature of the Oxs solver means that its capabilities may be varied as necessary
for the problem to be solved. Oxs modules distributed as part of OOMMEF support full 3D
simulations suitable for modeling layered materials.

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “4MAG” mailing list:

http://www.ctcms.nist.gov/ rdm/email-list. html.

The OOMMEF developers are always interested in your comments about OOMMF'. See the
Credits (Sec. 22) for instructions on how to contact them, and for information on referencing

OOMMEF.

 http://math.nist.gov/oommf/


http://www.nist.gov/itl/
http://www.nist.gov/itl/
http://www.nist.gov/
http://www.nist.gov/people/michael-j-donahue
http://www.nist.gov/people/michael-j-donahue
http://www.nist.gov/people/don-porter
http://www.ctcms.nist.gov/%7Erdm/email-list.html
http://math.nist.gov/oommf/

2 Installation

2.1 Requirements

OOMMEF software is written in C++ and Tcl. It uses the Tcl-based Tk Windowing Toolkit
to create graphical user interfaces that are portable to many varieties of Unix, Windows,
and Mac OS X.

Tcl and Tk must be installed before installing OOMMEF. Tcl and Tk are available for
free from the Tcl Developer Xchange?. We recommend the latest stable versions of Tcl and
Tk concurrent with this release of OOMMEF. OOMMEF requires at least Tcl version 7.5 and
Tk version 4.1 on Unix platforms, and requires at least Tcl version 8.0 and Tk version 8.0
on Microsoft Windows platforms. OOMMEF software does not support any alpha or beta
versions of Tcl/Tk, and each release of OOMMF may not work with later releases of Tcl/Tk.
Check the release dates of both OOMMEF and Tcl/Tk to ensure compatibility.

A Tecl/Tk installation includes two shell programs. The names of these programs may
vary depending on the Tcl/Tk version and the type of platform. The first shell program
contains an interpreter for the base Tcl language. In the OOMMEF documentation we refer
to this program as tclsh. The second shell program contains an interpreter for the base Tcl
language extended by additional Tcl commands supplied by the Tk toolkit. In the OOMMF
documentation we refer to this program as wish. Consult your Tcl/Tk documentation to
determine the actual names of these programs on your platform (for example, tc1sh86.exe
or wish8.6).

OOMMF applications communicate via TCP/IP network sockets. This means that
OOMMEF requires support for networking, even on a stand-alone machine. At a minimum,
OOMMEF must be able to access the loopback interface so that the host can talk to itself
using TCP/IP.

OOMMEF applications that use Tk require a windowing system and a valid display. On
Unix systems, this means that an X server must be running. If you need to run OOMMF
applications on a Unix system without display hardware or software, you may need to start
the application with command line option -tk 0 (see Sec. 5) or use the Xvfb? virtual frame
buffer.

The OOMMEF source distribution unpacks into a directory tree containing about 2500
files and directories, occupying approximately 130 MiB of storage. The amount of disk
space needed for compiling and linking varies greatly between platforms; allow up to an
additional 60 MB for the build. Removing intermediate object modules (cf. the pimake
“objclean” target, in Reducing Disk Space Usage, Sec. 2.3.1, below ) reduces the final space
requirement for source 4+ binary executables to less than 140 MB.

To build OOMMEF software from source code, you will need a C++ compiler capable
of handling C++ templates, C++ exceptions, and (for the OOMMF eXtensible Solver) the
C++ Standard Template Library. You will need other software development utilities for your

Zhttp://www.tcl.tk/
3http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
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platform as well. We do development and test builds on the following platforms, although
porting to others should not be too difficult:

Platform Compilers

Windows | Microsoft Visual C++, Borland C++,
Digital Mars dmc, MinGW g++, Cygwin
Linux/x86 | Gnu g++, Intel C++, Portland Group pgCC
Mac OS X | Gnu g++, Clang C++

Both 32- and 64-bit builds are supported on each of the above platforms, though most uses
of OOMMEF will prefer a 64-bit build to avoid limits on simulation sizes.

2.2 Basic Installation

Follow the instructions in the following sections, in order, to prepare OOMMEF software for
use on your computer.

2.2.1 Download

The latest release of the OOMMEF software may be retrieved from the OOMMEF download
page®. Each release is available in three formats. The first format is a gzipped tar file
containing an archive of all the OOMMF source code. The second and third formats are
.zip compressed archives containing source code and pre-compiled executables for Windows.
They contain 64-bit and 32-bit executables repectively. Each Windows binary distribution is
compatible with only a particular sequence of releases of Tcl/Tk. For example, a Windows
binary release for Tcl/Tk 8.6.x is compatible with Tcl/Tk 8.6.0, 8.6.1, .. ..
For the first format, unpack the distribution archive using gunzip and tar:

gunzip -c¢ oommf12b0.tar.gz | tar xvf -

For the other format(s), you will need a utility program to unpack the .zip archive. One
utility program which is known to be suitable is UnZip®.
Using your utility, unpack the .zip archive, e.g.

unzip oommfl2b0_86_x64.zip

For either distribution format, the unpacking sequence creates a subdirectory oommf
which contains all the files and directories of the OOMMEF distribution. If a subdirectory
named oommf already existed (say, from an earlier OOMMEF release), then files in the new
distribution overwrite those of the same name already on the disk. Some care may be needed
in that circumstance to be sure that the resulting mix of files from an old and a new OOMMF
distribution combine to create a working set of files.

4http://math.nist.gov /oommf/software.html
Shttp://www.info-zip.org/pub/infozip/UnZip.html


http://math.nist.gov/oommf/software.html
http://www.info-zip.org/pub/infozip/UnZip.html

2.2.2 Effects of the Installed Tcl/Tk

OOMMEF interacts with your Tcl/Tk installation in several ways. One important restriction
is that the major+minor release number of Tcl/Tk must match the major+minor release
number of the Tcl/Tk that OOMMF was built against. For example, if OOMMEF was built
using Tcl/Tk 8.5.19, then the resulting executables can run with any past or future releases
of Tcl/Tk from the 8.5.* series, but they won’t run (for example) with Tcl/Tk 8.4.20 or
8.6.6.

Another restriction is that the width of memory addresses in Tcl/Tk and OOMMF
must match. Most general-purpose operating systems today use primarily 64-bit memory
addresses, but for backwards compatibility can also run programs using 32-bit memory
addresses. However, a 64-bit executable cannot link against a 32-bit library, or vice versa.
Therefore, if you have a 64-bit Tcl/Tk installed, then you will need a 64-bit OOMMF, and
likewise a 32-bit Tcl/Tk needs a 32-bit OOMMF.

Another restriction is that while OOMMEF can be built to run in parallel across multiple
cpu cores on a shared memory machine using threads, to do this requires that the installed
Tcl/Tk be thread-enabled. Typical Tcl/Tk installs on Windows and Mac OS X are thread-
enabled. Tecl/Tk installs on recent releases of Unix also tend to be thread-enabled, but
some older versions have non-threaded Tcl/Tk installs. If your system Tcl/Tk install is
non-threaded, then you can either build a non-threaded version of OOMMEF, or else you
can make an additional, threaded Tcl/Tk install, for example under your home directory or
/usr/local. Be aware that if you have multiple Tcl/Tk installations on your system then
you need to be careful to use the proper tclsh whenever you build or launch OOMMEF.

If you download OOMMF with pre-built binaries, then it is imperative that you select
the download that matches the major+minor release number and memory address width
of the Tecl/Tk you want to run OOMMF with. On the other hand, if you build OOMMF
from source, then the tclsh you use to run the build process is inspected to determine
relevant information about the local Tcl/Tk environment. Some adjustment of the platform
configuration file, as described in the next section, may be necessary. Also, in many cases the
compilers used to build 32-bit and 64-bit executables are different—if you encounter build
problems, double-check that the proper compiler is being used.

All of the OOMMF downloads containing pre-built binaries are built for use with thread-
enabled Tcl/Tk. You will need to build from source if you want a non-threaded OOMME.
The build scripts will detect if the tclsh running the build procedure is non-threaded and
will build OOMMEF appropriately.

In all cases, use the platform configuration check described in the next section to verify
the compatibility of your Tecl/Tk and OOMMEF installs.

2.2.3 Check Your Platform Configuration

After downloading and unpacking the OOMMEF software distribution, all the OOMMEF soft-
ware is contained in a subdirectory named oommf. Start a command line interface (a shell on
Unix, or a console on Windows), and change the working directory to the directory oommf.



Find the Tcl shell program installed as part of your Tcl/Tk installation. In this manual
we call the Tcl shell program tclsh, but the actual name of the executable depends on the
release of Tcl/Tk and your platform type. Consult your Tecl/Tk documentation.

In the root directory of the OOMMF distribution is a file named oommf.tcl. It is the
bootstrap application (Sec. 5) which is used to launch all OOMMF software. With the
command line argument +platform, it will print a summary of your platform configuration
when it is evaluated by tclsh. This summary describes your platform type, your C++
compiler, and your Tecl/Tk installation. As an example, here is the typical output on a
CentOS 7 Linux system:

$ tclsh oommf.tcl +platform
<17875> oommf.tcl 1.2.1.0 info:
OOMMF release 1.2.1.0

Platform Name: linux-x86_64

Tcl name for 0S: Linux 3.10.0-327.28.3.el7.x86_64

C++ compiler: /bin/g++

Version string: g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-4) / x86_64-redhat-linux
Shell details —--—-

tclsh (running): /usr/bin/tclsh

(links to /usr/bin/tclsh8.5)
--> Version 8.5.13, 64 bit, threaded

tclsh (OOMMF) : /usr/bin/tclsh8.5
--> Version 8.5.13, 64 bit, threaded
tclConfig.sh: /usr/1ib64/tclConfig.sh
--> Version 8.5.13
wish (OOMMF) : /usr/bin/wish8.5
--> Version 8.5.13, Tk 8.5.13, 64 bit, threaded
tkConfig.sh: /usr/1ib64/tkConfig.sh
-—> Tk Version 8.5.13
OOMMF threads: Yes: Default thread count = 4
NUMA support: No
OOMMF API index: 20150129

Temp file directory: /tmp

If oommf.tcl +platform doesn’t print a summary similar to the above, it should instead
print an error message describing why it can’t. Follow any instructions provided and repeat
until oommf.tcl +platform successfully prints a summary of the platform configuration
information.

The first line of the example summary reports that OOMMEF recognizes the platform by
the name 1inux-x86_64. OOMMEF software recognizes many of the more popular computing
platforms, and assigns each a platform name. The platform name is used by OOMMEF in
index and configuration files and to name directories so that a single OOMMEF installation
can support multiple platform types. If oommf.tcl +platform reports the platform name



to be “unknown”, then you will need to add some configuration files to help OOMMEF assign
a name to your platform type, and associate with that name some of the key features of your
computer. See the section on “Managing OOMMEF platform names” (Sec. 2.3.5) for further
instructions.

The second line reports the operating system version, which is mainly useful to OOMMF
developers when fielding bug reports. The third line reports what C+-+ compiler will be
used to build OOMMEF from its C++ source code. If you downloaded an OOMMEF release
with pre-compiled binaries for your platform, you may ignore this line. Otherwise, if this line
reports “none selected”, or if it reports a compiler other than the one you wish to use, then
you will need to tell OOMMEF what compiler to use. To do that, you must edit the appropri-
ate configuration file for your platform. Continuing the example above, one would edit the
file config/platforms/linux-x86_64.tcl. Editing instructions are contained within the
file. On other platforms the name linux-x86_64 in config/platforms/linux-x86_64.tcl
should be replaced with the platform name OOMMEF reports for your platform. For example,
on a 32-bit Windows machine using an x86 processor, the corresponding configuration file is
config/platforms/wintel.tcl.

The next group of lines describe the Tcl configuration OOMMEF finds on your platform.
The first couple of lines, “tclsh (running)”, describe the Tcl shell running the oommf.tcl
script. After that, the “tclsh (OOMMEF)” subgroup describes the Tcl shell that OOMMF
will launch when it needs to run Tcl scripts. If the OOMMEF binaries have been built, then
there will also be a filtersh subgroup, which describes the augmented Tcl shell used to run
many of the OOMMF support scripts. All of these shells should report the same version,
bitness, and threading information. If OOMMEF can’t find tclsh, or if it finds the wrong one,
you can correct this by setting the environment variable OOMMF _TCLSH to the absolute
location of tclsh. (For information about setting environment variables, see your operating
system documentation.)

Following the Tcl shell information, the tclConfig.sh lines report the name of the
configuration file installed as part of Tcl, if any. Conventional Tcl installations on Unix
systems and within the Cygwin environment on Windows have such a file, usually named
tclConfig.sh. The Tcl configuration file records details about how Tcl was built and where
it was installed. On Windows platforms, this information is recorded via other means, so
it is normal to have oommf .tcl +platform report “none found”. If oommf.tcl +platform
reports “none found”, but you know that an appropriate Tcl configuration file is present on
your system, you can tell OOMMF where to find the file by setting the environment variable
OOMMF _TCL_CONFIG to its absolute filename. In unusual circumstances, OOMMF may
find a Tcl configuration file which doesn’t correctly describe your Tcl installation. In that
case, use the environment variable OOMMF_TCL_CONFIG to instruct OOMMF to use a
different file that you specify, and, if necessary, edit that file to include a correct description
of your Tcl installation.

Next, the oommf.tcl +platform reports similar information about the wish and Tk
configuration. The environment variables 0OMMF_TK_CONFIG and O0OMMF_WISH may be used to
tell OOMMEF where to find the Tk configuration file and the wish program, respectively.



Following the Tk information are some lines reporting “thread” build and run status.
Threads are used by OOMMF to implement parallelism in the Oxs (oxsii and boxsi) 3D
solvers on multi-processor/multi-core shared memory machines. In order to build or run
a parallel version of OOMMEF, you must have a thread-enabled version of Tcl. The Tcl
thread status is indicated on the first thread status line. If Tcl is thread enabled, then
the default OOMMF build process will create a threaded version of OOMMF. You can
override this behavior if you wish to build a non-parallel version of OOMMEF by editing the
oommf _threads value in the config/platforms/ file for your platform.

If Tcl and OOMMEF threads are enabled, then the default number of threads run by the
Oxs solvers is also reported. (This value may vary between machines, depending on the
number of processors in the machine.) You can change this by setting (in order of increasing
precedence) the oommf thread count value in the installation-wide config/options file, the
thread count value in the config/platforms/ file for your platform, via the environment
variable 0OMMF_THREADS, or by the oxsii/boxsi command line option -threads.

By default, OOMMEF sets no upper limit on the number of threads you may run in
oxsii or boxsi. However, performance is degraded if you run more threads than available
cpu cores. To protect against this, or to limit resource use on a shared machine, you may
wish to set a hard limit on the maximum number of threads per oxsii or boxsi instance.
This can be done by setting (in order of increasing precedence) the environment variable
OOMMF_THREADLIMIT, the thread limit value in the config/platforms/ file for your plat-
form, or the oommf _thread limit value in the config/options file. (Note the precedence
order is reversed compared to that for the default thread count.) If a limit is set then that
value is displayed in the threads line of the oommf .tcl +platform output.

If NUMA support is provided on your platform (see “Parallelization,” Sec. 2.3.4 below),
then the following oommf .tcl +platform output line will indicate whether or not the build
process will create NUMA-aware Oxs solvers.

After the thread and NUMA information, oommf.tcl +platform reports the directory
that OOMMF will use to write temporary files. This directory is used, for example, to
transfer magnetization data from the micromagnetic solvers to the mmDisp display module.
You must have write access to this directory. It needs to have enough space to manage the
dataflows of your simulations. It is also beneficial if this directory is local to the processors
performing the calculations. If you don’t like the OOMMEF default, you may change it via
the path_directory_temporary setting in the config/platforms/ file for your platform.
Or you can set the environment variable 00MMF_TEMP, which will override all other settings.

If any environment variables relevant to OOMMEF are set, then oommf.tcl +platform
will report these next, followed finally by any warnings about possible problems with your
Tcl/Tk installation, such as if you are missing important header files.

If oommf.tcl +platform indicates problems with your Tecl/Tk installation, it may be
easiest to re-install Tcl/Tk taking care to perform a conventional installation. OOMMF
deals best with conventional Tcl/Tk installations. If you do not have the power to re-install
an existing broken Tcl/Tk installation (perhaps you are not the sysadmin of your machine),
you might still install your own copy of Tcl/Tk in your own user space. In that case, if your



private Tcl/Tk installation makes use of shared libraries, take care that you do whatever is
necessary on your platform to be sure that your private tclsh and wish find and use your
private shared libraries instead of those from the system Tcl/Tk installation. This might
involve setting an environment variable (such as LD_.LIBRARY_PATH on Unix or PATH
on Windows). If you use a private Tcl/Tk installation, you also want to be sure that there
are no environment variables like TCL_LIBRARY or TK_LIBRARY that still refer to the
system Tcl/Tk installation.

Additional Configuration Issues on Windows A few other configurations should be
checked on Windows platforms. First, note that absolute filenames on Windows makes use
of the backslash (\) to separate directory names. On Unix and within Tcl the forward slash
(/) is used to separate directory names in an absolute filename. In this manual we usually
use the Tcl convention of forward slash as separator. In portions of the manual pertaining
only to MS Windows we use the backslash as separator. There may be instructions in this
manual which do not work exactly as written on Windows platforms. You may need to
replace forward slashes with backward slashes in pathnames when working on Windows.

OOMMEF software needs networking support that recognizes the host name localhost.
It may be necessary to edit a file which records that localhost is a synonym for the loop-
back interface (127.0.0.1). If a file named hosts exists in your system area (for example,
C:\Windows\hosts), be sure it includes an entry mapping 127.0.0.1 to localhost. If no
hosts file exists, but a hosts.sam file exists, make a copy of hosts.sam with the name
hosts, and edit the copy to have the localhost entry.

The directory that holds the tclsh and wish programs also holds several *.d11 files that
OOMMEF software needs to find to run properly. Normally when the OOMMEF bootstrap
application (Sec. 5) or mmLaunch (Sec. 6) is used to launch OOMMF programs, they take
care of making sure the necessary *.d11 files can be found. As an additional measure, you
might want to add the directory which holds the tclsh and wish programs to the list of
directories stored in the PATH environment variable. All the directories in the PATH are
searched for *.d11 files needed when starting an executable.

2.2.4 Compiling and Linking

If you downloaded a distribution with pre-compiled executables, you may skip this section.

When building OOMMEF software from source code, be sure the C+-+ compiler reported
by oommf .tcl +platform is properly configured. In particular, if you are running on a Win-
dows system, please read carefully the notes in Advanced Installation, Sec. 2.4.3, pertaining
to your compiler.

The compiling and linking of the C++ portions of OOMMEF software are guided by the
application pimake (Sec. 16.20) (“Platform Independent Make”) which is distributed as part
of the OOMMEF release. To begin building OOMMF software with pimake, first change your
working directory to the root directory of the OOMMEF distribution:

cd .../path/to/oommf



If you unpacked the new OOMMEF release into a directory oommf which contained an
earlier OOMMEF release, use pimake to build the target upgrade to clear away any source
code files which were in a former distribution but are not part of the latest distribution:

tclsh oommf.tcl pimake upgrade

Next, build the target distclean to clear away any old executables and object files which
are left behind from the compilation of the previous distribution:

tclsh oommf.tcl pimake distclean
Next, to build all the OOMMEF software, run pimake without specifying a target:
tclsh oommf.tcl pimake

On some platforms, you cannot successfully compile OOMMEF software if there are OOMMF
programs running. Check that all OOMMF programs have terminated (including those in
the background) before trying to compile and link OOMMEF.

When pimake calls on a compiler or other software development utility, the command line
is printed, so that you may monitor the build process. Assuming a proper configuration for
your platform, pimake should be able to compile and link all the OOMMF software without
error. If pimake reports errors, please first consult Troubleshooting (Sec. 20) to see if a fix
is already documented. If not, please send both the complete output from pimake and the
output from oommf.tcl +platform to the OOMMEF developers when you e-mail to ask for
help.

2.2.5 Installing
The current OOMMEF release does not support an installation procedure. For now, simply
run the executables from the directories in which they were unpacked/built.

2.2.6 Using OOMMF Software

To start using OOMMF software, run the OOMMF bootstrap application (Sec. 5). This
may be launched from the command line interface:

tclsh oommf.tcl

If you prefer, you may launch the OOMMF bootstrap application oommf . tcl using what-
ever graphical “point and click” interface your operating system provides. By default, the
OOMMEF bootstrap application will start up a copy of the OOMMEF application mmLaunch
(Sec. 6) in a new window.



2.2.7 Reporting Problems

If you encounter problems when installing or using OOMMEF, please report them to the
OOMMEF developers. The oommf .tcl +platform command has been designed in large part
to help OOMMEF developers debug installation problems, so PLEASE be sure to include
the complete output from oommf.tcl +platform in your report. See also the section on
troubleshooting (Sec. 20) for additional instructions.

2.3 Advanced Installation

The following sections provide instructions for some additional installation options.

2.3.1 Reducing Disk Space Usage

To delete the intermediate files created when building the OOMMEF software from source
code, use pimake (Sec. 16.20) to build the target objclean in the root directory of the
OOMMF distribution.

tclsh oommf.tcl pimake objclean

Running your platform strip utility on the OOMMEF executable files should also reduce
their size somewhat.

2.3.2 Local Customizations

OOMMEF software supports local customization of some of its features. All OOMMEF pro-
grams load the file config/options.tcl, which contains customization commands as well
as editing instructions. As it is distributed, config/options.tcl directs programs to also
load the file config/local/options.tcl, if it exists. Because future OOMMEF releases
may overwrite the file config/options.tcl, permanent customizations should be made by
copying config/options.tcl to config/local/options.tcl and editing the copy. It is
recommended that you leave in the file config/local/options.tcl only the customization
commands necessary to change those options you wish to modify. Remove all other op-
tions so that overwrites by subsequent OOMMEF releases are allowed to change the default
behavior.

Notable available customizations include the choice of which network port the host service
directory application (Sec. 4) uses, and the choice of what program is used for the display of
help documentation. By default, OOMMF software uses the application mmHelp (Sec. 15),
which is included in the OOMMEF release, but the help documentation files are standard
HTML, so any web browser may be used instead. Complete instructions are in the file
config/options.tcl.
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2.3.3 Optimization

In the interest of successful compilation of a usable software package “out of the box,” the
default configuration for OOMMEF does not attempt to achieve much in terms of optimization.
However, in each platform’s configuration file (for example, config/platforms/wintel.tcl),
there are alternative values for the configuration’s optimization flags, available as comments.
If you are familiar with your compiler’s command line options, you may experiment with
other choices as well. You can edit the platform configuration file to replace the default
selection with another choice that provides better computing performance. For example,
in config/platforms/wintel.tcl, alternative optimization flags for the MSVC++ com-
piler may be invoked by editing how the configuration variable opts is defined, following
instructions in the comments.

The extensible solver, Oxs, can be compiled with debugging support for extensive run-
time code checks. This will significantly reduce computation performance. In the standard
OOMMEF distributions, these checks should be disabled. You may verify this by checking
that the following line appears in the file config/options.tcl:

Oc_Option Add * Platform cflags {-def NDEBUG}

To enable these checks, either comment /remove this line, or else add to the config/local/options.tcl
file a “cflags” option line without “-def NDEBUG”, such as

Oc_Option Add * Platform cflags {-warn 1}

The config/local/options.tcl file may be created if it does not already exist.

2.3.4 Parallelization

The OOMMF Oxs 3D solvers (oxsii and boxsi) can be built thread-enabled to allow
parallel processing on multi-processor/multi-core machines. In order to build and run a
parallel version of OOMMF, you must have a thread-enabled version of Tcl. Most standard
binary releases of Tcl today are thread-enabled, so OOMMEF releases that include pre-built
executables are built thread-enabled. If you build OOMMEF from source, then by default
OOMMEF will be built thread-enabled if your Tcl is thread-enabled. As explained earlier,
you can check thread build status with the tclsh oommf.tcl +platform command. If you
want to force a non-threaded build of OOMMF, then edit the config/platforms/ file for
your platform. In the section labeled LOCAL CONFIGURATION, you will find a line that looks
like

# $config SetValue oommf_threads O

Uncomment this line (i.e., remove the leading ‘#’ character) to force a non-threaded build.
Then run

tclsh oommf.tcl pimake distclean
tclsh oommf.tcl pimake

11



from the OOMMEF root directory to create a fresh build.

You can use the tclsh oommf.tcl +platform command to see the default number of
compute threads that will be run by the Oxs 3D solver programs oxsii and boxsi. You can
modify the default as explained in the Platform Configuration (Sec. 2.2.3) section, or you
can override the default at run time via the command line option -threads to oxsii and
boxsi.

Some multi-processor machines have a non-uniform memory architecture (NUMA), which
means that although each processor can access all of system memory, some parts of memory
can be accessed faster than others. Typically this is accomplished by dividing the system
memory and processors into “nodes.” Memory accesses within a node are faster than accesses
between nodes, and depending on the architecture access latency and bandwidth may be
different between different node pairs. Examples of machines with NUMA include some
multi-processor AMD Opteron and Intel Xeon boxes.

Computer programs such as OOMMEF can run on NUMA machines without making any
special allowances for the memory architecture. However, a program that is written to take
advantage of the faster local (intra-node) memory accesses can sometimes run significantly
faster. OOMMEF contains NUMA-aware code, but this code is highly operating system spe-
cific. At present, OOMMEF can be built with NUMA support only on Linux (32- and 64-bit)
systems. To do this, you must install the operating system NUMA support packages “nu-
mactl” and “numactl-devel”. The names may vary somewhat between Linux distributions,
but the first typically includes the executable numactl and the second includes the header
file numa.h. Once the numactl package is installed, you can run the command

numactl --hardware

to get an overview of the memory architecture on your machine. If this shows you have only
one node, then there is no advantage to making a NUMA-aware build of OOMMEF.

The next step is to edit the config/platforms for your platform. For example, on a
64-bit Linux box this file is config/platforms/linux-x86_64.tcl. In the section labeled
LOCAL CONFIGURATION, find the line

# $config SetValue use_numa 1

Edit this to remove the leading ‘#’ character. Alternatively (and, actually, preferably), create
a local subdirectory and make a local configuration file with the same platform name; e.g.,
config/platforms/local/linux-x86_64.tcl on a 64-bit Linux machine. Add the line

$config SetValue use_numa 1

to this file. (The advantage of using a config/platforms/local file is that you can make
changes without modifying the original OOMMEF source code, which makes it easier to port
your local changes to future releases of OOMME.) If this is done correctly, then the command
‘tclsh oommf.tcl +platform’ will show that NUMA support is enabled. Then simply run
‘tclsh oommf.tcl pimake distclean’ and ‘tclsh oommf.tcl pimake’ from the OOMMF
root directory to build a NUMA-aware version of OOMMEF.
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To activate the NUMA-aware code, you must specify the -numanodes option on the
oxsii/boxsi command line, or set the the environment variable 0OMMF_NUMANODES. Check
the Oxs documentation (Sec. 7) for details.

2.3.5 Managing OOMMEF Platform Names

OOMMEF software classifies computing platforms into different types using the scripts in the
directory config/names relative to the root directory of the OOMMEF distribution. Each
type of computing platform is assigned a unique name. These names are used as directory
names and in index and configuration files so that a single OOMMEF installation may contain
platform-dependent sections for many different types of computing platforms.

To learn what name OOMMEF software uses to refer to your computing platform, run

tclsh oommf.tcl +platform

in the OOMMEF root directory.

Changing the name OOMMEF assigns to your platform First, use pimake (Sec. 16.20)
to build the target distclean to clear away any compiled executables built using the old
platform name.

tclsh oommf.tcl pimake distclean

Then, to change the name OOMMEF software uses to describe your platform from foo to
bar, simply rename the file

config/names/foo.tcl to  config/names/bar.tcl
and
config/platforms/foo.tcl to  config/platforms/bar.tcl.

After renaming your platform type, you should recompile your executables using the new
platform name.

Adding a new platform type If oommf.tcl +platform reports the platform name
unknown, then none of the scripts in config/names/ recognizes your platform type. As
an example, to add the platform name foo to OOMMEF’s vocabulary of platform names,
create the file config/names/foo.tcl. The simplest way to proceed is to copy an existing
file in the directory config/names and edit it to recognize your platform.

The files in config/names include Tcl code like this:

Oc_Config New _ \
[string tolower [file rootname [file tail [info script]l]]] {
# In this block place the body of a Tcl proc which returns 1

13



if the machine on which the proc is executed is of the
platform type identified by this file, and which returns 0O
otherwise.

The usual Tcl language mechanism for discovering details
about the machine on which the proc is running is to
consult the global Tcl variable 'tcl_platform'. See the
existing files for examples, or contact the OOMMF
developers for further assistance.

H OH H H H R HEH

3

After creating the new platform name file config/names/foo.tcl, you also need to
create a new platform file config/platforms/foo.tcl. A reasonable starting point is to
copy the file config/platforms/unknown.tcl for editing. Contact the OOMMF developers
for assistance.

Please consider contributing your new platform recognition and configuration files to the
OOMMEF developers for inclusion in future releases of OOMMEF software.

Resolving platform name conflicts If the script oommf.tcl +platform reports “Mul-
tiple platform names are compatible with your computer”, then there are multiple files in the
directory config/names/ that return 1 when run on your computer. For each compatible
platform name reported, edit the corresponding file in config/names/ so that only one of
them returns 1. Experimenting using tclsh to probe the Tcl variable tcl_platform should
assist you in this task. If that fails, you can explicitly assign a platform type corresponding
to your computing platform by matching its hostname. For example, if your machine’s host
name is foo.bar.net:

Oc_Config New _ \
[string tolower [file rootname [file tail [info script]l]]] {
if {[string match foo.bar.net [info hostname]]} {
return 1

}

# Continue with other tests...

3

Contact the OOMMEF developers if you need further assistance.

2.4 Platform Specific Installation Issues

The installation procedure discussed in the previous sections applies to all platforms (Unix,
Windows, Mac OS X). There are, however, some details which pertain only to a particular
platform. These issues are discussed below.
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2.4.1 Unix Configuration

Missing Tcl/Tk files The basic installation procedure should be sufficient to install
OOMMEF on most Unix systems. Sometimes, however, the build will fail due to missing
Tcl header files (tcl.h, tk.h) or libraries (e.g., libtcl.so, libtk.so). This problem can
usually be solved by installing a “development” version of Tcl/Tk, which may be found on
the operating system installation disks, or may be available from the system vendor. There
are also binary releases of T'cl/Tk for a number of systems available from ActiveState, under
the name ActiveTcl®. Alternatively, one may download the sources for Tcl and Tk from
the Tcl Developer Xchange”, and build and install Tcl/Tk from source. The Tecl/Tk build
follows the usual Unix configure, make, make install build convention.

Compiler Optimization Options On most systems, OOMMF builds by default with
relatively unaggressive compiler optimization options. As discussed earlier (“Optimization,”
Sec. 2.3.3), you may edit the appropriate oommf/config/platforms/ file to change the
default compilation options. However, on some common systems (e.g., Linux, some BSD
variants) OOMMEF will try to deduce the hardware architecture (i.e., the CPU subtype,
such as Pentium 3 vs. Pentium 4) and apply architecture-specific options to the compile
commands. This is probably what you want it OOMMEF is to be run only on the system on
which it was built, or if it is run on a homogeneous cluster. If, instead, you intend to run
OOMMEF on a heterogeneous cluster you may need to restrict the compiler options to those
supported across your target machines. In that case, open the appropriate configuration file
in the oommf/config/platforms/ directory, and look for the lines

# You can override the GuessCPU results by directly setting or
# unsetting the cpuopts variable, e.g.,

#

# set cpuopts [list -march=athlon]
# or

# unset cpuopts

#

Uncomment either the “unset cpuopts” line to make a generic build, or else edit the “set

cpuopts” line to an appropriate common-denominator architecture and uncomment that line.
In a similar vein, some compilers support a “fast” switch, which usually creates an

architecture-specific executable. The same considerations apply in this case.

An advanced alternative would be to define separate OOMMF “platforms” for each CPU
subtype in your cluster. At a minimum, this would involve creating separate platform name
files in ocommf/config/names/ for each subtype, and then making copies of the appropriate
oommf/config/platforms file for each new platform. The platform name files would have
to be written so as to reliably detect the CPU subtype on each machine. See “Managing
OOMMEF platform names” (Sec. 2.3.5) for details on creating platform name files.

Shttp://www.activestate.com/activetcl/
"http://purl.org/tcl/home/
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Portland Group pgCC compiler on Linux The platform build scripts for Linux,

oommf /config/platforms/lintel.tcl (32-bit) and oommf/config/platforms/linux-x86_64.tcl
(64-bit) contain sections supporting the Portland Group pgCC compiler. Non-threaded

builds of OOMMEF using this compiler run fine, but threaded builds segfault when running
Oxsii/Boxsi (Sec. 7). The source of this problem is not known at this time.

2.4.2 Mac OS X Configuration

The build procedure for Mac OS X is the same as for Unix. The platform name is “darwin”.
If the platform configuration check (Sec. 2.2.3) does not find a C++ compiler, then you will
have to install one. Refer to your system documentation for details.

2.4.3 Microsoft Windows Options

This section lists installation options for Microsoft Windows.

Using Microsoft Visual C++4 If you are building OOMMEF software from source using
the Microsoft Visual C++ command line compiler, cl.exe, it is necessary to set up the path
and some environment variables before running the compiler. There is a batch file distributed
with Visual C4++ that you can run to do this. The name of the file varies between Visual
C++ releases, but for example may be vcvarsall.bat or setenv.cmd. For 64-bit builds
you may need to include the “amd64” option on the batch file command line. You may want
to set up your system so this batch file gets run automatically when you open a command
window. See your compiler and system documentation for details.

Using MinGW g-++4 Both 32-bit and 64-bit builds are supported using the MinGW ports
of g++. (The 32-bit and 64-bit versions of g++ are separate downloads.) Use a standard
Windows Tcl/Tk, such as the ActiveTcl® release from ActiveState. You will also need to
edit the appropriate platform file to select g++ as the compiler. If you are using a 32-bit
Tcl/Tk and g++, then the platform file is oommf\config\platforms\wintel.tcl. For 64-
bit Tcl/Tk and g++ the platform file is oommf\config\platforms\windows-x86_64.tcl.

Using the Cygwin toolkit The Cygwin Project’ is a free port of the GNU development
environment to Windows, which includes the GNU C++ compiler g++ and X11. To build
OOMMEF within the Cygwin environment, start up a Cygwin or Cygwin64 shell and follow
the usual Unix build procedure. The platform name will be cygtel or cygwin-x86_64,
according to whether you are running a 32- or 64-bit Cygwin tclsh, respectively. The
resulting OOMMEF build requires the Cygwin environment, so it will need to be launched
from a Cygwin shell. Moreover, OOMMEF will use X11 as the windowing interface, so you will
need to have the Cygwin port of X11 installed, including the 1ibX11-devel, 1ibXft-devel,

8http://www.activestate.com/activetcl/
Shttp://www.cygwin.com/
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libfontconfig-devel packages and dependencies. This means that typically OOMMF will
be started from an X11 xterm or equivalent.

If you get errors saying a child process couldn’t be forked (typically with either “resource
temporarily unavailable” or “Loaded to different address” error messages), then follow this
procedure:

1. Exit all Cygwin processes
2. Use Windows Explorer or a Windows command shell to launch c:\cygwin\bin\ash.exe
3. Run /bin/rebaseall inside the ash shell.

Additional information on this problem can be found in the Cygwin documentation.

The Cygwin versions of Tcl/Tk prior to 8.6 were not threaded, so OOMMEF built with
Tcl/Tk 8.5 and older will likewise not be threaded. This limitation is removed with the
Cygwin Tcl/Tk 8.6 release.

Using Borland C++ OOMMEF has been successfully built and tested using the Borland
C++ command line compiler version 5.5. However, a couple preparatory steps are necessary
before building OOMMEF with this compiler.

1. Properly complete bceb5 compiler installation.

Be sure to read the readme.txt file in the BCC55 subdirectory of the Borland install
directory. In particular, check that the bcc32.cfg and i1ink32.cfg configuration files
exist in the BIN subdirectory, and have appropriate contents. If you omit this step you
will get error messages during the OOMME build process relating to the inability of
the Borland compiler to find system header files and libraries. You will probably also
need to add the Borland BIN directory to your PATH environment variable. Some of the
Borland tools are fragile with respect to spaces in their pathnames, so you should either
select the Borland install directory to be one without spaces anywhere in the pathname
(e.g., use C:\Borland\ instead of "C:\Program Files\Borland\"), or at least when
setting the PATH use the “8dot3” style short name version of each component of the
Borland install directory, e.g.,

PATH=C:\Progra~1\Borland\BCC55\Bin; %PATHY,

Use “dir /x” to display both the short and long versions of filenames. The Borland
Developer Studio 2006 install automatically sets the path to include the long name
version of the Borland BIN directory; you should manually change this via the System
dialog box from the Control Panel. Select the Advanced tab, and pull up the Environ-
ment Variables sub-dialog. Edit the Path variable as discussed above; check both the
“User variables” and the “System variables” settings. You will need to launch a new
shell (command prompt) for the changes to take effect.
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2. Create Borland compatible Tcl and Tk libraries.

The import libraries distributed with Tcl/Tk, release 8.0.3 and later, are not com-
patible with the Borland C++ linker. However, the command line utility coff2omf,
which is distributed with the Borland compiler, can be used to create suitable libraries
from the Tcl/Tk .lib’s. In the Tecl/Tk library directory (typically C:\Tc1l\1lib or
"C:\Program Files\Tcl\lib"), issue the following commands

coff2omf tcl84.1ib tcl84bc.1lib
coff2omf tk84.1lib tk84bc.lib

Here tc184.1ib and tk84.1ib are the input libraries (in COFF format) and tc184bc.1lib
and tk84bc.1ib are the new libraries (in OMF format).

If coff2omf doesn’t work, you can try creating the necessary import libraries directly
from the Tcl/Tk DLL’s. From the Tecl/Tk library directory issue the following com-
mands:

impdef -a tcl84bc.def ..\bin\tcl84.d1ll
implib tcl84bc.lib tcl84bc.def

This creates the Borland compatible import library tc184bc.1lib. Repeat with “tk”
in place of “tcl” to create tk84bc.lib. The “-a” switch requests impdef to add a
leading underscore to function names. This is sufficient for the DLL’s shipped with
Tcl/Tk 8.4, but other releases may require additional tweaking. The module definition
file output by impdef, e.g., tc1l84bc.def above, is a plain text file. You may need to
edit this file to add or modify entries.

3. Edit oommf\config\platforms\wintel.tcl

At a minimum, you will have to change the program_compiler_c++ value to point to
the Borland C++ compiler. The sample wintel.tcl file assumes the librarian t1ib
and the linker i1ink32 are in the execution path, and that the Borland compatible
import libraries, with names as specified above, are in the Tcl/Tk library directory. If
this is not the case then you will have to make appropriate modifications. Also, you
may need to add the “-0” switch to the linker command to force ordinal usage of the
Borland compatible Tcl/Tk libraries produced in the previous step.

After this, continue with the instructions in Sec. 2.2.4, Compiling and Linking.

Using Digital Mars C++4 To build using the Digital Mars'® C4++ command line com-
piler (dmc), follow these instructions:

Whttp://www.digitalmars.com/
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1. Install the Digital Mars C++ compiler, tools, and STL.

Unpack the dmc archive into a convenient location. The default name for the root
directory of the dmc installation area is “dm”. Unpack the STLport (C++ Standard
Library) into the dmc installation area. The top-level directory in the STLport archive
is “dm”, so if you unzip this archive from the parent directory to the dmc installation
area it will naturally unpack into its standard location. Then modify the dmc config-
uration to include the STL header files. The dm\bin\sc.ini file should be edited so
that the first element of the INCLUDE path is "%@P%\..\stlport\stlport";

Next, use “set INCLUDE” and “set LIBRARY” from the DOS command prompt to
check that these environment variables are either not set, or else set to values as
needed by the Digital Mars compiler. (These variables names may be used by other
applications, which will conflict with values expected by dmec.) To unset these vari-
ables, use the commands “set INCLUDE=" and “set LIBRARY=". For convenience, you
probably also want to put the dm\bin directory into your environment PATH variable.

2. Create compatible Tcl/Tk import libraries.

The Digital Mars linker uses the same library format as the Borland linker, and as in
that case, you will have to build compatible import libraries for the Tcl/Tk libraries.
The “basic utilities” package available from Digital Mars includes the implib import
librarian that can be used for this purpose. Alternatively, you can use the Borland
tools. See the section above on using Borland C++ for details.

3. Edit oommf\config\platforms\wintel.tcl.

You will need to uncomment the entry for the dmc compiler, and comment out the
other compiler selections. (The comment character is '#’.) The configuration file
assumes that the dmc compiler and associated tools are in a directory included in your
environment PATH variable.

After this, continue with the instructions in Sec. 2.2.4, Compiling and Linking.

Setting the TCL_LIBRARY environment variable If you encounter difficulties dur-
ing OOMMEF start up, you may need to set the environment variable TCL_LIBRARY.
(NOTE: This is almost never necessary!)

Bring up the Control Panel (e.g., by selecting Settings|Control Panel off the Start
menu), and select System. Go to the Environment tab, and enter TCL_LIBRARY as the
Variable, and the name of the directory containing init.tcl for the Value, e.g.,

%SystemDrive’\Program Files\Tc1l\1lib\tc18.0

Click Set and OK to finish.
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3 Quick Start: Example OOMMEF Session

STEP 1: Start up the mmLaunch window.

e At the command prompt, when you are in the OOMMEF root directory, type
tclsh oommf.tcl

(The name of the Tcl shell, rendered here as tclsh, may vary between systems. This
matter is discussed in Sec. 2.1.) Alternatively, you may launch oommf .tcl using what-
ever “point and click” interface is provided by your operating system.

e This will bring up a small window labeled mmLaunch. It will come up in background
mode, so you will get another prompt in your original window, even before the mm-
Launch window appears.

STEP 2: Gain access to other useful windows.

e In the mmLaunch window, check the box for your host (very likely the only choice
available), causing a menu of user account boxes to appear. Check the box correspond-
ing to the account you want to compute on (also very likely only one choice available).
This gives a menu of options:

— mmArchive: to auto-save scalar and vector field data

— mmDataTable: to display current values of scalar outputs

— mmDisp: to display vector fields

— mmGraph: to form x-y plots

— mmProbEd: to view or modify a problem for mmSolve2D or Oxsii
— mmSolve2D: to control the 2D solver

— Oxsii: to control the 3D solver

e Click on mmDisp, mmGraph, and/or mmDataTable, depending on what form of
output you want to view. Use mmArchive to save data to disk.

STEP 3a: Run a 2D problem.

Load problem:

e In the mmLaunch window, click on the mmProbEd button.

e In the mmProbEd (Sec. 8) window, make menu selection File| Open... An Open
File dialog window will appear. In this window:

— Double click in the Path subwindow to change directories. Several sample
problems can be found in the directory oommf/app/mmpe/examples.

— To load a problem, double click on a *.mif file (e.g., probl.mif) from the list
above the Filter: subwindow.
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e Modify the problem as desired by clicking on buttons from the main mmProbEd
window (e.g., Material Parameters), and fill out the pop-up forms. A completely
new problem may be defined this way.

e [f desired, the defined problem may be stored to disk via the File| Save as... menu
selection.
Initialize solver:
e In the mmLaunch window, click on the mmSolve2D button to launch an instance
of the program mmSolve2D (Sec. 10.1).

e Wait for the new solver instance to appear in the Threads column in the mm-
Launch window.

e Check the box next to the mmSolve2D entry in the Threads column. A window
containing an mmSolve2D interface will appear.

e In the mmSolve2D window:
— Check Problem Description under Inputs.
— Check mmProbEd under Source Threads.
— Click LoadProblem.
— A status line will indicate the problem is loading.
— When the problem is fully loaded, more buttons appear.
— Check Scheduled Outputs.

— For each desired output (TotalField, Magnetization, and /or DataTable), spec-
ify the frequency of update:

1. Check desired output. This will exhibit the possible output destinations un-
der the Destination Threads heading. Output applications such as mmDisp,
mmGraph, and/or mmDataTable must be running to appear in this list.

2. Check the box next to the desired Destination Thread. This will exhibit
Schedule options.

3. Choose a schedule:
x Iteration: fill in number and check the box.
x ControlPoint: fill in number and check the box.
x Interactive: whenever you click corresponding Interactive output button.
Start calculation:
e In the mmSolve2D window, start the calculation with Run (which runs until
problem completion) or Relax (which runs until the next control point is reached).

e If you requested mmDataTable output, check the boxes for the desired quantities on
the mmDataTable (Sec. 11) window under the Data menu, so that they appear
and are updated as requested in your schedule.

e Similarly, check the box for the desired X, Y1, and Y2 quantities on the mmGraph
(Sec. 12) window(s) under the X, Y1 and Y2 menus.
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Save and/or display results:

e Vector field data (magnetization and effective field) may be viewed using mmDisp
(Sec. 13). You can manually save data to disk using the File|Save as... menu
option in mmDisp, or you can send scheduled output to mmArchive (Sec. 14) for
automatic storage. For example, to save the magnetization state at the end of each
control point, start up an instance of mmArchive and select the ControlPoint
check box for mmArchive on the Magnetization schedule in the solver. This may
be done before starting the calculation. (Control points are points in the simulation
where the applied field is stepped. These are typically equilibrium states, but
depending on the input *.mif file, may be triggered by elapsed simulation time or
iteration count.)

e Tabular data may be saved by sending scheduled output from the solver to mmArchive,
which automatically saves all the data it receives. Alternatively, mmGraph can
be used to save a subset of the data: schedule output to mmGraph as desired,
and use either the interactive or automated save functionality of mmGraph. You
can set up the solver data scheduling before the calculation is started, but you
must wait for the first data point to configure mmGraph before saving any data.
As a workaround, you may configure mmGraph by sending it the initial solver
state interactively, and then use the Options|clear Data menu item in mmGraph
to remove the initializing data point. If you want to inspect explict numeric val-
ues, use mmDataTable, which displays single sets of values in a tabular format.
mmDataTable has no data save functionality.

Midcourse control:

e In the mmSolve2D window, buttons can stop and restart the calculation:
— Reset: Return to beginning of problem.
— LoadProblem: Restart with a new problem.
— Run: Apply a sequence of fields until all complete.

— Relax: Run the ODE at the current applied field until the next control point
is reached.

— Pause: Click anytime to stop the solver. Continue simulation from paused
point with Run or Relax.

— Field—: Apply the previous field again.
— Field+: Apply the next field in the list.
e Output options can be changed and new output windows opened.

e When the stopping criteria for the final control point are reached, mmSolve2D
will pause to allow the user to interactively output final results.

STEP 3b: Run a 3D problem.

Launch solver:
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e In the mmLaunch window, click on the Oxsii button to launch an instance of the
program Oxsii (Sec. 7.1).
e Wait for the new solver instance to appear in the Threads column in the mm-
Launch window.
e Check the box next to the Oxsii entry in the Threads column. A window contain-
ing an Oxsii interface will appear.
Load problem:
e In the Oxsii window, select the File|Load... menu option. A Load Problem
dialog box will appear. On this window:
— Double click in the Path subwindow to change directories. Several sample
problems can be found in the directory oommf/app/oxs/examples.
— To load a problem, double click on a *.mif file (e.g., stdprobl.mif) from the
list above the Filter: subwindow.
The native input format for the 3D solver is the MIF 2.1 (Sec. 17.3) format, which
must be composed by hand using a plain text editor. (See the Oxs_Ext Child
Class (Sec. 7.3) documentation for additional details.) However, MIF 1.1 (i.e., 2D
problem) files are readable by Oxsii, or may be converted to the MIF 2.1 format
using the command line tool mifconvert (Sec. 16.12). mmProbEd (Sec. 8) also
supports an extension to the MIF 1.1 format, namely MIF 1.2, which provides
limited 3D functionality. MIF 1.2 files may also be read directly by Oxsii. Either
way, to run in Oxsii a problem created by mmProbEd, the problem must first
be saved to disk via the File|Save as... menu option in mmProbEd.
e The status line in the Oxsii interface window will indicate the problem is loading.
e When the problem is fully loaded, the status line will show “Pause”, and the top
row of buttons (Reload, Reset, ...) will become active. Also, the Output list will
fill with available outputs.
e Set up scheduled outputs. For each desired output
1. Select the source from the Output list.
2. Select the receiver from the Destination list.
3. Specify the frequency of update:
— Step: fill in number and check the box.
— Stage: fill in number and check the box.
The items in the Output list will vary depending on the problem that was loaded.
The items in the Destination list reflect the OOMMF data display and archiving
programs currently running.

Start calculation:

e In the Oxsii window, start the calculation with Run, Relax, or Step.

e [f you requested mmDataTable output, check the boxes for the desired quantities on
the mmDataTable (Sec. 11) window under the Data menu, so that they appear
and are updated as requested in your schedule.
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e Similarly, check the box for the desired X, Y1, and Y2 quantities on the mmGraph
(Sec. 12) window(s) under the X, Y1 and Y2 menus.

Save and/or display results:

e Vector field data (magnetization and fields) may be viewed using mmDisp (Sec. 13).
You can manually save data to disk using the File|Save as... menu option in
mmDisp, or you can send scheduled output to mmArchive (Sec. 14) for auto-
matic storage. For example, to save the magnetization state at the end of each
problem stage, start up an instance of mmArchive and select the Stage check
box for the Magnetization output, mmArchive destination pair. (Stages denote
points in the simulation where some significant event occurs, such as when an equi-
librium is reached or some preset simulation time index is met. These criteria are
set by the input MIF file.)

e Tabular data may be saved by sending scheduled output from the solver to mmArchive,
which automatically saves all the data it receives. Alternatively, mmGraph can
be used to save a subset of the data: schedule output to mmGraph as desired,
and use either the interactive or automated save functionality of mmGraph. You
can set up the solver data scheduling before the calculation is started, but you
must wait for the first data point to configure mmGraph before saving any data.
As a workaround, you may configure mmGraph by sending it the initial solver
state interactively, and then use the Options|clear Data menu item in mmGraph
to remove the initializing data point. If you want to inspect explict numeric val-
ues, use mmDataTable, which displays single sets of values in a tabular format.
mmDataTable has no data save functionality.

Midcourse control:

e In the Oxsii window, buttons can stop and restart the calculation:
— Reload: Reload the same file from disk.
— Reset: Return to problem start.
— Run: Step through all stages until all complete.
— Relax: Run until the current stage termination criteria are met.
— Step: Do one solver iteration and then pause.

— Pause: Click anytime to stop the solver. Continue simulation from paused
point with Run, Relax or Step.

— Stage: Interactively change the current stage index by either typing the desired
stage number (counting from 0) into the Stage entry box or by moving the
associated slider.

e Output options can be changed and new output windows opened. The Send button
in the Oxsii Schedule subwindow is used to interactively send output to the selected
Output + Destination pair.

e When the stage termination (stopping) criteria of the final stage are met, Oxsii will
pause to allow the user to interactively output final results via the Send button.
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The batch interface Boxsi (Sec. 7.2) terminates automatically when the termina-
tion criteria for the final stage are met.

STEP 4: Exit OOMMEF.

e Individual OOMMF applications can be terminated by selecting the File|Exit menu
item from their interface window.

e Selecting File| Exit on the mmLaunch window will close the mmLaunch window, and
also the interface windows for any mmArchive, mmSolve2D, and Oxsii applications.
However, those applications will continue to run in the background, and their interfaces
may be re-displayed by starting a new mmLaunch instance.

e To kill all OOMMEF applications, select the File|Exit Al OOMMEF option from the
mmULaunch menu bar.
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4 OOMMF Architecture Overview

Before describing each of the applications which comprise the OOMMEF software, it is helpful
to understand how these applications work together. OOMMEF is not structured as a single
program. Instead it is a collection of programs, each specializing in some task needed as
part of a micromagnetic simulation system. An advantage of this modular architecture is
that each program may be improved or even replaced without a need to redesign the entire
system.

The OOMMEF programs work together by providing services to one another. The pro-
grams communicate over Internet (TCP/IP) connections, even when the programs are run-
ning on a common host. An advantage of this design is that distributed operation of OOMMEF
programs over a networked collection of hosts is supported in the basic design, though it is
not fully realized in the current release.

When two OOMMEF applications are in the relationship that one is requesting a service
from the other, it is convenient to introduce some clarifying terminology. Let us refer to
the application that is providing a service as the “server application” and the application
requesting the service as the “client application.” Note that a single application can be both
a server application in one service relationship and a client application in another service
relationship.

Each server application provides its service on a particular Internet port, and needs to
inform potential client applications how to obtain its service. Each client application needs
to be able to look up possible providers of the service it needs. The intermediary which
brings server applications and client applications together is another application called the
“account service directory.” There may be at most one account service directory application
running under the user ID of each user account on a host. Each account service directory
keeps track of all the services provided by OOMMEF server applications running under its
user account on its host and the corresponding Internet ports at which those services may be
obtained. OOMMEF server applications register their services with the corresponding account
service directory application. OOMMEF client applications look up service providers running
under a particular user ID in the corresponding account server directory application.

The account service directory applications simplify the problem of matching servers and
clients, but they do not completely solve it. OOMMEF applications still need a mechanism
to find out how to obtain the service of the account service directory! Another application,
called the “host service directory” serves this function. Only one copy of the host service
directory application runs on each host. Its sole purpose is to tell OOMMEF applications
where to obtain the services of account service directories on that host. Because only one
copy of this application runs per host, it can provide its service on a well-known port which
is configured into the OOMMEF software. By default, this is port 15136. OOMMEF software
can be customized (Sec. 2.3.2) to use a different port number.

The account service directory applications perform another task as well. They launch
other programs under the user ID for which they manage service registration. The user
controls the launching of programs through the interface provided by the application mm-
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Launch (See Sec. 6), but it is the account service directory application that actually spawns
a subprocess for the new application. Because of this architecture, most OOMMEF applica-
tions are launched as child processes of an account service directory application. These child
processes inherit their environment from their parent account service directory application,
including their working directory, and other key environment variables, such as DISPLAY.
Each account service directory application sets its working directory to the root directory of
the OOMMEF distribution.

These service directory applications are vitally important to the operation of the total
OOMMEF micromagnetic simulation system. However, it would be easy to overlook them.
They act entirely “behind the scenes” without a user interface window. Furthermore, they
are never launched by the user. When any server application needs to register its service, if
it finds that these service directory applications are not running, it launches new copies of
them. In this way the user can be sure that if any OOMMEF server applications are running,
then so are the service directory applications needed to direct clients to its service. After all
server applications terminate, and there are no longer any services registered with a service
directory application, it terminates as well. Similarly, when all service directory applications
terminate, the host service directory application exits.

In the sections which follow, the OOMMF applications are described in terms of the
services they provide and the services they require.
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5 Command Line Launching

Some of the OOMMEF applications are platform-independent Tecl scripts. Some of them
are Tcl scripts that require special platform-dependent interpreters. Others are platform-
dependent, compiled C++ applications. It is possible that some of them will change status in
later releases of OOMMF. Each of these types of application requires a different command line
for launching. Rather than require all OOMMEF users to manage this complexity, we provide
a pair of programs that provide simplified interfaces for launching OOMMEF applications.

The first of these is used to launch OOMMEF applications from the command line. Because
its function is only to start another program, we refer to this program as the “bootstrap
application.” The bootstrap application is the Tcl script oommf.tcl. In its simplest usage,
it takes a single argument on the command line, the name of the application to launch. For
example, to launch mmGraph (Sec. 12), the command line is:

tclsh oommf.tcl mmGraph

The search for an application matching the name is case-insensitive. (Here, as elsewhere in
this document, the current working directory is assumed to be the OOMMEF root directory.
For other cases, adjust the pathname to oommf . tcl as appropriate.) As discussed in Sec. 2.1,
the name of the Tcl shell, rendered here as tclsh, may vary between systems.

If no command line arguments are passed to the bootstrap application, by default it will
launch the application mmLaunch (Sec. 6).

Any command line arguments to the bootstrap application that begin with the character
‘+’ modify its behavior. For a summary of all command line options recognized by the
bootstrap application, run:

tclsh oommf.tcl +help

The command line arguments +bg and +fg control how the bootstrap behaves after
launching the requested application. It can exit immediately after launching the requested
application in background mode (+bg), or it can block until the launched application ex-
its (+fg). Each application registers within the OOMMF system whether it prefers to be
launched in foreground or background mode. If neither option is requested on the command
line, the bootstrap launches the requested application in its preferred mode.

The first command line argument that does not begin with the character + is interpreted
as a specification of which application should be launched. As described above, this is usually
the simple name of an application. When a particular version of an application is required,
though, the bootstrap allows the user to include that requirement as part of the specification.
For example:

tclsh oommf.tcl "mmGraph 1.1"

will guarantee that the instance of the application mmGraph it launches is of at least version
1.1. If no copy of mmGraph satisfying the version requirement can be found, an error is
reported.
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The rest of the command line arguments that are not recognized by the bootstrap are
passed along as arguments to the application the bootstrap launches. Since the bootstrap
recognizes command line arguments that begin with + and most other applications recognize
command line arguments that begin with -, confusion about which options are provided to
which programs can be avoided. For example,

tclsh oommf.tcl +help mmGraph

prints out help information about the bootstrap and exits without launching mmGraph.
However,

tclsh oommf.tcl mmGraph -help

launches mmGraph with the command line argument -help. mmGraph then displays its
own help message.

Most OOMMEF applications accept the standard options listed below. Some of the
OOMMEF applications accept additional arguments when launched from the command line,
as documented in the corresponding sections of this manual. The ~help command line option
can also be used to view the complete list of available options. When an option argument is
specified as <0]1>, 0 typically means off, no or disable, and 1 means on, yes or enable.

-console Display a console widget in which Tcl commands may be interactively typed into
the application. Useful for debugging.

-cwd directory Set the current working directory of the application.
-help Display a help message and exit.

-nickname <name> Associates the specified name as a nickname for the process. The
string name should contain at least one non-numeric character. Nicknames can also
be set at launch time via the Destination command (Sec. 17.3.2) in MIF 2.x files, or
after a process is running via the nickname (Sec. 16.13) command line application.
Nicknames are used by the MIF 2.x Destination command to associate Oxs output
streams with particular application instances. Multiple -nickname options may be
used to set multiple nicknames. (Technical detail: Nickname functionality is only
available to processes that connect to an account server.)

-tk <0|1> Disable or enable Tk. Tk must be enabled for an application to display graphi-
cal widgets. However, when Tk is enabled on Unix platforms the application is depen-
dent on an X Windows server. If the X Windows server dies, it will kill the application.
Long-running applications that do not inherently use display widgets support disabling
of Tk with -tk 0. Other applications that must use display widgets are unable to run
with the option -tk 0. To run applications that require -tk 1 on a Unix system with
no display, one might use Xvfb'! .

Uhttp:/ /www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
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-version Display the version of the application and exit.

In addition, those applications which enable Tk accept additional Tk options, such as
-display. See the Tk documentation for details.

The bootstrap application should be infrequently used by most users. The application
mmULaunch (Sec. 6) provides a more convenient graphical interface for launching applica-
tions. The main uses for the bootstrap application are launching mmLaunch, launching
pimake, launching programs which make up the OOMMF Batch System (Sec. 10.2) and
other programs that are inherently command line driven, and in circumstances where the user
wishes to precisely control the command line arguments passed to an OOMMEF application
or the environment in which an OOMMEF application runs.

Platform Issues

On most Unix platforms, if oommf.tcl is marked executable, it may be run directly, i.e.,
without specifying tclsh. This works because the first few lines of the oommf . tcl Tcl script
are:

#!/bin/sh
# \
exec tclsh "$0" ${1+"$0"}

When run, the first tclsh on the execution path is invoked to interpret the oommf . tcl script.
If the Tcl shell program cannot be invoked by the name tclsh on your computer, edit the
first lines of oommf.tcl to use the correct name. Better still, use symbolic links or some
other means to make the Tcl shell program available by the name tclsh. The latter solution
will not be undone by file overwrites from OOMMEF upgrades.

If in addition, the directory .. ./path/to/oommf is in the execution path, the command
line can be as simple as:

oommf .tcl appName

from any working directory.

On Windows platforms, because oommf.tcl has the file extension .tcl, it is normally
associated by Windows with the wish interpreter. The oommf .tcl script has been specially
written so that either tclsh or wish is a suitable interpreter. This means that simply
double-clicking on an icon associated with the file oommf.tcl (say, in Windows Explorer)
will launch the bootstrap application with no arguments. This will result in the default
behavior of launching the application mmLaunch, which is suitable for launching other
OOMMEF applications. (If this doesn’t work, refer back to the Windows Options section in
the installation instructions, Sec. 2.4.3.)
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6 OOMMEF Launcher/Control Interface: mmLaunch

EF <0= mmLaunch E\@

File Help
W werxes ||xerxes: M darius

darius
Programs Threads
mmArchive mmDataTable <1>
mmDisp <2>

mmDataTable
mmGraph <3>

mmDisp Oxsii <4> ¥
mmGraph mmGraph <5>

| — ) -
mmProbEd mmArchive <6>

mmSolveZD

Ousii

Overview

The application mmLaunch launches, monitors, and controls other OOMMEF applications.
It is the OOMMEF application which is most closely connected to the account service directory
and host service directory applications that run behind the scenes. It also provides user
interfaces to any applications, notably Oxsii (Sec. 7.1) and mmSolve2D (Sec. 10.1), that
do not have their own user interface window.

Launching

mmULaunch should be launched using the bootstrap application (Sec. 5). The command
line is

tclsh oommf.tcl mmLaunch [standard options]

Controls

Upon startup, mmLaunch displays a panel of checkbuttons, one for each host service direc-
tory to which it is connected. In the current release of OOMMEF there is only one checkbutton,
named for the host on which mmLaunch is running. If there is no host service directory
running on the localhost when mmLaunch is launched, mmLaunch will start one. In that
circumstance, there may be some delay before the host checkbutton appears.

Toggling the host checkbutton toggles the display of an interface to the host service
directory. The host service directory interface consists of a row of checkbuttons, one for
each account service directory registered with the host service directory. Each checkbutton
is labeled with the user ID of the corresponding account service directory. For most users,
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there will be only one checkbutton, labeled with the user’s own account ID. If there is no
account service directory running for the account under which mmLaunch was launched,
mmLaunch will start one. In that circumstance, there may be some delay before the
account checkbutton appears.

Toggling an account checkbutton toggles the display of an interface to the corresponding
account service directory. The account service directory interface consists of two columns.
The Programs column contains buttons labeled with the names of OOMMF applications
that may be launched under the account managed by this account service directory. Clicking
on one of these buttons launches the corresponding application. Only one click is needed,
though there will be some delay before the launched application displays a window to the
user. Multiple clicks will launch multiple copies of the application. Note: The launching is
actually handled by the account service directory application (Sec. 4), which sets the initial
working directory to the OOMMEF root directory.

The Threads column is a list of all the OOMMF applications currently running under
the account that are registered with the account service directory. The list includes both
the application name and an ID number by which multiple copies of the same application
may be distinguished. This ID number is also displayed in the title bar of the corresponding
application’s user interface window. When an application exits, its entry is automatically
removed from the Threads list.

Any of the running applications that do not provide their own interface window will be
displayed in the Threads list with a checkbutton. The checkbutton toggles the display of
an interface which mmLaunch provides on behalf of that application. The only OOMMF
applications currently using this service are the 3D solvers Oxsii and Boxsi (Sec. 7), the 2D
solvers mmSolve2D and batchsolve (Sec. 10), and the archive application mmArchive
(Sec. 14). These interfaces are described in the documentation for the corresponding appli-
cations.

The menu selection File| Exit terminates the mmLaunch application, and the File| Exit
All OOMMF selection terminates all applications in the Threads list, and then exits mm-
Launch. The menu Help provides the usual help facilities.
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7 OOMMEF eXtensible Solver

The Oxs (OOMMEF eXtensible Solver) is an extensible micromagnetic computation engine
capable of solving problems defined on three-dimensional grids of rectangular cells holding
three-dimensional spins. There are two interfaces provided to Oxs: the interactive interface
Oxsii (Sec. 7.1) intended to be controlled primarily through a graphical user interface, and the
batch mode Boxsi (Sec. 7.2), which has extended command line controls making it suitable
for use in shell scripts.

Problem definition for Oxs is accomplished using input files in the MIF 2 format (Sec. 17.3).
This is an extensible format; the standard OOMMEF modules are documented in Sec. 7.3 be-
low. Files in the MIF 1.1 and MIF 1.2 formats are also accepted. They are passed to
mifconvert (Sec. 16.12) for conversion to MIF 2 format “on-the-fly.”

Note on Tk dependence: Some MIF 2 problem descriptions rely on external image files;
examples include those using the Oxs_ImageAtlas class (Sec. 7.3.1), or those using the MIF 2
ReadFile command with the image translation specification (Sec. 17.3.2). If the image file
is not in the PPM P3 (text) format, then the any2ppm application may be launched to
read and convert the file. Since any2ppm requires Tk, at the time the image file is read a
valid display must be available. See the any2ppm documentation (Sec. 16.1) for details.

7.1 OOMMPF eXtensible Solver Interactive Interface: Oxsii
Bl <4> Oxsii =8 Eol =

File Options Help

Reload | Reset | Run | Relax | Step | Pause
Problem: C;/Users/darius/oommf/app/oxs/examples/stdprobl.mif
Status: Run
Stage:| 20 I
Output Destination Schedule
Oxs_Demag:Field ﬂ mmArchive<6:2> J Send ‘

Oxs_MinDriver:Magnetization mmDisp<2:0= ’—
Oxs_MinDriver:Spin J W Step every 10[1
Oxs_UZeeman:Energy density ¥ Stage every|5

Oxs_UZeeman:Field
Cive | lniavialAnicnatrameFnarnv dancihe & v Done

Overview

The application Oxsii is the graphical, interactive user interface to the Oxs micromagnetic
computation engine. Within the OOMMEF architecture (see Sec. 4), Oxsii is both a server
and a client application. Oxsii is a client of data table display and storage applications, and
vector field display and storage applications. Oxsii is the server of a solver control service
for which the only client is mmLaunch (Sec. 6). It is through this service that mmLaunch
provides a user interface window (shown above) on behalf of Oxsii.
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A micromagnetic problem is communicated to Oxsii via a MIF 2 file, which defines a
collection of Oxs Fxt objects that comprise the problem model. The problem description
includes a segmentation of the lifetime of the simulation into stages. Stages mark discontin-
uous changes in model attributes, such as applied fields, and also serve to mark coarse grain
simulation progress. Oxsii provides controls to advance the simulation, stopping between
iterations, between stages, or only when the run is complete. Throughout the simulation,
the user may save and display intermediate results, either interactively or via scheduling
based on iteration and stage counts.

Problem descriptions in the MIF 1.1 and MIF 1.2 formats can also be input. They are
automatically passed to mifconvert (Sec. 16.12) for implicit conversion to MIF 2 format.

Launching

Oxsii may be started either by selecting the Oxsii button on mmLaunch, or from the com-
mand line via

tclsh oommf.tcl oxsii [standard options] [-exitondone <O[1>] \
[-logfile logname] [-loglevel level] [-nice <0|1>] [-nocrccheck <0|1>] \
[-numanodes nodes] [-outdir dir] [-parameters params] [-pause <0[1>] \
[-restart <0[1]|2>] [-restartfiledir dir] [-threads count] [miffile]

where

-exitondone <0|1> Whether to exit after solution of the problem is complete. Default is
to simply await the interactive selection of another problem to be solved.

-logfile logname Write log and error messages to file logname. The default log file is
oommf/oxsii.errors.

-loglevel level Controls the detail level of log messages, with larger values of level producing
more output. Default value is 1.

-nice <0|1> If enabled (i.e., 1), then the program will drop its scheduling priority after
startup. The default is 1, i.e., to yield scheduling priority to other applications.

-nocrccheck <0[1> On simulation restarts, the CRC CRC (Sec. 16.7) of the MIF file is
normally compared against the CRC of the original MIF file as recorded in the restart
file. If the CRCs don’t match then an error is thrown to alert the user that the MIF
file has changed. If this option is enabled (i.e., 1) then the check is disabled.

-numanodes <nodes> This option is available on NUMA-aware (Sec. 2.3.4) builds of
Oxs. The nodes parameter must be either a comma separated list of 0-based node
numbers, the keyword “auto”, or the keyword ‘“none”. In the first case, the num-
bers refer to memory nodes. These must be passed on the command line as a single
parameter, so either insure there are no spaces in the list, or else protect the spaces
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with outlying quotes. For example, -numanodes 2,4,6 or -numanodes "2, 4, 6".
Threads are assigned to the nodes in order, in round-robin fashion. The user can ei-
ther assign all the system nodes to the Oxsii process, or may restrict Oxsii to run on
a subset of the nodes. In this way the user may reserve specific processing cores for
other processes (or other instances of Oxsii). Although it varies by system, typically
there are multiple processing cores associated with each memory node. If the keyword
“auto” is selected, then the threads are assigned to a fixed node sequence that spans
the entire list of memory nodes. If the keyword “none” is selected, then threads are
not tied to nodes by Oxsii, but are instead assigned by the operating system. In this
last case, over time the operating system is free to move the threads among proces-
sors. In the other two cases, each thread is tied to a particular node for the lifetime of
the Oxsii instance. See also the discussion on threading considerations in the Boxsi
documentation.

The default value for nodes is “none”, which allows the operating system to assign
and move threads based on overall system usage. This is also the behavior obtained
when the Oxs build is not NUMA-aware. On the other hand, if a machine is dedicated
primarily to running one instance of Oxsii, then Oxsii will likely run fastest if the
thread count is set to the number of processing cores on the machine, and nodes is set
to “auto”. If you want to run multiple copies of Oxsii simultaneously, or run Oxsii in
parallel with some other application(s), then set the thread count to a number smaller
than the number of processing cores and restrict Oxsii to some subset of the memory
nodes with the —-numanodes option and an explicit nodes list.

The default behavior is modified (in increasing order of priority) by the numanodes
setting in the active oommf/config/platform/ platform file, by the numanodes setting
in the oommf/config/options.tcl or oommf/config/local/options.tcl file, or by
the environment variable 0OMMF_NUMANODES. The -numanodes command line option, if
any, overrides all.

-outdir dir Specifies the directory where output files are written by mmArchive. This
option is useful when the default output directory is inaccessible or slow. The environ-
ment variable 0OMMF_OUTDIR sets the default output directory. If 0OMMF_OUTDIR is set
to the empty string, or not set at all, then the default is the directory holding the MIF
file. If this option is specified on the command line, or if 0OMMF_OUTDIR is set, then the
Oxsii File|Load. .. dialog box includes a control to change the output directory.

-parameters params Sets MIF 2 (Sec. 17.3) file parameters. The params argument should
be a list with an even number of arguments, corresponding to name + value pairs. Each
“name” must appear in a Parameter statement (Sec. 17.3.2) in the input MIF file. The
entire name + value list must be quoted so it is presented to Oxsii as a single item
on the command line. For example, if A and Ms appeared in Parameter statements in
the MIF file, then an option like

-parameters "A 13e-12 Ms 800e3"
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could be used to set A to 13e-12 and Ms to 800e3. The quoting mechanism is specific
to the shell/operating system; refer to your system documentation for details.

-pause <0|1> If disabled (i.e., 0), then the program automatically shifts into “Run” mode
after loading the specified miffile. The default is 1, i.e., to “Pause” once the problem
is loaded. This switch has no effect if miffile is not specified.

-restart <0|1> Controls the initial setting of the restart flag, and thereby the load restart
behavior of any miffile specified on the command line. The restart flag is described
in the Controls section below. The default value is 0, i.e., no restart.

-restartfiledir dir Specifies the directory where restart files are written. The default is
determined by the environment variable 0OMMF_RESTARTFILEDIR, or if this is not set
then by OOMMF_OUTDIR. If neither environment variable is set then the default is the
directory holding the MIF file. Write access is required to the restart file directory.
Also, you may want to consider whether the restart files should be written to a local
temporary directory or a network mount.

-threads <count> The option is available on threaded (Sec. 2.3.4) builds of Oxs. The
count parameter is the number of threads to run. The default count value is set by
the oommf _thread count value in the config/platforms/ file for your platform, but
may be overridden by the 0OMMF_THREADS environment variable or this command line
option. In most cases the default count value will equal the number of processing cores
on the system; this can be checked via the command tclsh oommf.tcl +platform.

miffile Load and solve the problem found in miffile, which must be either in the MIF 2
format, or convertible to that format by mifconvert. Optional.

All the above switches are optional.

Since Oxsii does not present any user interface window of its own, it depends on mm-
Launch to provide an interface on its behalf. The entry for an instance of Oxsii in the
Threads column of any running copy of mmLaunch has a checkbutton next to it. This
button toggles the presence of a user interface window through which the user may control
that instance of Oxsii.

Inputs

Unlike mmSolve2D (Sec. 10.1), Oxsii loads problem specifications directly from disk (via
the File|Load... menu selection), rather than through mmProbEd (Sec. 8) or File-
Source (Sec. 9). Input files for Oxsii must be either in the MIF 2 (Sec. 17.3) format, or
convertible to that format by the command line tool mifconvert (Sec. 16.12). There are
sample MIF 2 files in the directory oommf/app/oxs/examples. MIF files may be edited with
any plain text editor.
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Outputs

Once a problem has been loaded, the scroll box under the Output heading will fill with a list of
available outputs. The contents of this list will depend upon the Oxs_Ext objects specified in
the input MIF file. Refer to the documentation for those objects for specific details (Sec. 7.3).
To send output from Oxsii to another OOMMEF application, highlight the desired selection
under the Output heading, make the corresponding selection under the Destination heading,
and then specify the output timing under the Schedule heading. Outputs may be scheduled
by the step or stage, and may be sent out interactively by pressing the Send button. The
initial output configuration is set by Destination and Schedule commands in the input
MIF file (Sec. 17.3.2).

Outputs fall under two general categories: scalar (single-valued) outputs and vector field
outputs. The scalar outputs are grouped together as the DataTable entry in the Output scroll
box. Scalar outputs include such items as total and component energies, average magnetiza-
tion, stage and iteration counts, max torque values. When the DataTable entry is selected,
the Destination box will list all OOMMEF applications accepting datatable-style input, i.e.,
all currently running mmDataTable (Sec. 11), mmGraph (Sec. 12), and mmArchive
(Sec. 14) processes.

The vector field outputs include pointwise magnetization, various total and partial mag-
netic fields, and torques. Unlike the scalar outputs, the vector field outputs are listed in-
dividually in the Output scroll box. Allowed destinations for vector field output are run-
ning instances of mmDisp (Sec. 13) and mmArchive (Sec. 14). Caution is advised when
scheduling vector field output, especially with large problems, because the output may run
many megabytes.

Controls

The File menu button holds five entries: Load, Show Console, Close Interface, Clear Schedule
and Exit Oxsii. File|Load... launches a dialog box that allows the user to select an input
MIF problem description file. File|Show Console brings up a Tcl shell console running
off the Oxsii interface Tcl interpreter. This console is intended primary for debugging
purposes. In particular, output from MIF Report commands (Sec. 17.3.2) may be viewed
here. File| Close Interface will remove the interface window from the display, but leaves the
solver running. This effect may also be obtained by deselecting the Oxsii interface button
in the Threads list in mmLaunch. File|Clear Schedule will disable all currently active
output schedules, exactly as if the user clicked through the interactive schedule interface
one output and destination at a time and disabled each schedule-enabling checkbutton. The
final entry, File| Exit Oxsii, terminates the Oxsii solver and closes the interface window.
The Options menu holds two entries: Clear Schedule and Restart Flag. The first clears
all Step and Stage selections from the active output schedules, exactly as if the user clicked
through the interactive schedule interface one output and destination at a time and disabled
each schedule-enabling checkbutton. This control can be used after loading a problem to
override the effect of any Schedule commands in the MIF file. The restart flag controls

37



problem load behavior. In normal usage, the restart flag is not set and the selected problem
loads and runs from the beginning. Conversely, if the restart flag is set, then when a problem
is loaded a check is made for a restart (checkpoint) file. If the checkpoint file is not found,
then an error is raised. Otherwise, the information in the checkpoint file is used to resume the
problem from the state saved in that file. The restart flag can be set from the Options menu,
the File|Load dialog box, or from the command line. See the Oxs_Driver documentation,
Sec. 7.3.5 page 82, for information on checkpoint files.

The Help menu provides the usual help facilities.

The row of buttons immediately below the menu bar provides simulation progress control.
These buttons become active once a problem has been loaded. The first button, Reload,
re-reads the most recent problem MIF input file, re-initializes the solver, and pauses. Reset
is similar, except the file is not re-read. The remaining four buttons, Run, Relax, Step
and Pause place the solver into one of four run-states. In the Pause state, the solver sits
idle awaiting further instructions. If Step is selected, then the solver will move forward one
iteration and then Pause. In Relax mode, the solver takes at least one step, and then runs
until it reaches a stage boundary, at which point the solver is paused. In Run mode, the
solver runs until the end of the problem is reached. Interactive output is available in all
modes; the scheduled outputs occur appropriately as the step and stage counts advance.

Directly below the progress control buttons are two display lines, showing the name of
the input MIF file and the current run-state. Below the run-state Status line is the stage
display and control bar. The simulation stage may be changed at any time by dragging the
scroll bar or by typing the desired stage number into the text display box to the left of the
scroll bar. Valid stage numbers are integers from 0 to N — 1, where N is the number of
stages specified by the MIF input file.

Details

The simulation model construction is governed by the Specify blocks in the input MIF file.
Therefore, all aspects of the simulation are determined by the specified Oxs_Ext classes
(Sec. 7.3). Refer to the appropriate Oxs_Ext class documentation for simulation and com-
putational details.
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7.2 OOMMEF eXtensible Solver Batch Interface: boxsi
EF‘:}B Boxsi E\@

File Help

Run | Relax | Step | Pause

Problem: C;/Users/darius/oommf/app/oxs/examples/stdprobl.mif
Status: Run
Stage: 4 /100

Output Destination Schedule
DataTable “ ||mmArchive<6:1= Send ‘
Oxs_CGEvolve:evolve:H mmDataTable<1:0> ’5—
Oxs_CGEvolverevolve:Total energy density mmGraph<3:.0= W Step every
Ows_CGEvolverevolve:mxHxm mmGraph<5:0= ¥ Stage every|l
Oxs_Demag:Energy density
Mve Naman-Fiald ﬂ | I Done

Overview

The application Boxsi provides a batch mode interface to the Oxs micromagnetic compu-
tation engine. A restricted graphical interface is provided, but Boxsi is primarily intended
to be controlled by command line arguments, and launched by the user either directly from
the shell prompt or from inside a batch file.

Within the OOMMEF architecture (see Sec. 4), Boxsi is both a server and a client appli-
cation. It is a client of data table display and storage applications, and vector field display
and storage applications. Boxsi is the server of a solver control service for which the only
client is mmLaunch (Sec. 6). It is through this service that mmLaunch provides a user
interface window (shown above) on behalf of Boxsi.

A micromagnetic problem is communicated to Boxsi through a MIF 2 file specified on
the command line and loaded from disk. The MIF 1.x formats are also accepted; they are
converted to the MIF 2 format by an automatic call to mifconvert (Sec. 16.12).

Launching
Boxsi must be started from the command line. The syntax is

tclsh oommf.tcl boxsi [standard options] [-exitondone <0|1>] [-kill tags] \
[-logfile logname] [-loglevel level] [-nice <0|1>] [-nocrccheck <0[1>] \
[-numanodes nodes] [-outdir dir] [-parameters params] [-pause <0[1>] \
[-regression_test flag] [-regression_testname basename] \
[-restart <0|1|2>] [-restartfiledir dir] [-threads count] miffile

where

-exitondone <0|1> Whether to exit after solution of the problem is complete, or to await
the interactive selection of the File| Exit command. The default is 1, i.e., automatically
exit when done.
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-kill tags On termination, sends requests to other applications to shutdown too. The tags
argument should be either a list of destination tags (which are declared by Destination
commands, Sec. 17.3.2) from the input MIF file, or else the keyword all, which is
interpreted to mean all the destination tags.

-logfile logname Write log and error messages to file logname. The default log file is
oommf /boxsi.errors.

-loglevel level Controls the detail level of log messages, with larger values of level producing
more output. Default value is 1.

-nice <0|1> If enabled (i.e., 1), then the program will drop its scheduling priority after
startup. The default is 0, i.e., to retain its original scheduling priority.

-nocrccheck <0[1> On simulation restarts, the CRC CRC (Sec. 16.7) of the MIF file is
normally compared against the CRC of the original MIF file as recorded in the restart
file. If the CRCs don’t match then an error is thrown to alert the user that the MIF
file has changed. If this option is enabled (i.e., 1) then the check is disabled.

-numanodes <nodes> This option is available on NUMA-aware (Sec. 2.3.4) builds of
Oxs. The nodes parameter must be either a comma separated list of 0-based node
numbers, the keyword “auto”, or the keyword ‘none”. In the first case, the num-
bers refer to memory nodes. These must be passed on the command line as a single
parameter, so either insure there are no spaces in the list, or else protect the spaces
with outlying quotes. For example, -numanodes 2,4,6 or -numanodes "2, 4, 6".
Threads are assigned to the nodes in order, in round-robin fashion. The user can ei-
ther assign all the system nodes to the Boxsi process, or may restrict Boxsi to run
on a subset of the nodes. In this way the user may reserve specific processing cores for
other processes (or other instances of Boxsi). Although it varies by system, typically
there are multiple processing cores associated with each memory node. If the keyword
“auto” is selected, then the threads are assigned to a fixed node sequence that spans
the entire list of memory nodes. If the keyword “none” is selected, then threads are
not tied to nodes by Boxsi, but are instead assigned by the operating system. In this
last case, over time the operating system is free to move the threads among processors.
In the other two cases, each thread is tied to a particular node for the lifetime of the
Boxsi instance. See also the discussion on threading considerations below.

The default value for nodes is “none”, which allows the operating system to assign
and move threads based on overall system usage. This is also the behavior obtained
when the Oxs build is not NUMA-aware. On the other hand, if a machine is dedicated
primarily to running one instance of Boxsi, then Boxsi will likely run fastest if the
thread count is set to the number of processing cores on the machine, and nodes is set
to “auto”. If you want to run multiple copies of Boxsi simultaneously, or run Boxsi in
parallel with some other application(s), then set the thread count to a number smaller
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than the number of processing cores and restrict Boxsi to some subset of the memory
nodes with the —-numanodes option and an explicit nodes list.

The default behavior is modified (in increasing order of priority) by the numanodes
setting in the active oommf/config/platform/ platform file, by the numanodes setting
in the oommf/config/options.tcl or oommf/config/local/options.tcl file, or by
the environment variable 0OMMF_NUMANODES. The -numanodes command line option, if
any, overrides all.

-outdir dir Specifies the directory where output files are written by mmArchive. This
option is useful when the default output directory is inaccessible or slow. The envi-
ronment variable 0OMMF_QUTDIR sets the default output directory. If 0OMMF_QUTDIR is
set to the empty string, or not set at all, then the default is the directory holding the
MIF file.

-parameters params Sets MIF 2 (Sec. 17.3) file parameters. The params argument should
be a list with an even number of arguments, corresponding to name + value pairs. Each
“name” must appear in a Parameter statement (Sec. 17.3.2) in the input MIF file. The
entire name + value list must be quoted so it is presented to Boxsi as a single item
on the command line. For example, if A and Ms appeared in Parameter statements in
the MIF file, then an option like

-parameters "A 13e-12 Ms 800e3"

could be used to set A to 13e-12 and Ms to 800e3. The quoting mechanism is specific
to the shell/operating system; refer to your system documentation for details.

-pause <0|1> If enabled (i.e., 1), then the program automatically pauses after loading
the specified problem file. The default is 0, i.e., to automatically move into “Run”
mode once the problem is loaded.

-regression_test flag This option is used internally by the oxsregression (Sec. 16.18)
command line utility to run regression tests. Default value is 0 (no test).

-regression_testname basename This option is used internally by the oxsregression
(Sec. 16.18) command line utility to control temporary file names during regression
testing.

-restart <0|1|2> If the restart option is 0 (the default), then the problem loads and runs
from the beginning. If set to 1, then when loading the problem a check is made for a
pre-existing restart (checkpoint) file. If one is found, then the problem resumes from
the state saved in that file. If no checkpoint file is found, then an error is raised. If the
restart option is set to 2, then a checkpoint file is used if one can be found, but if not
then the problem loads and runs from the beginning without raising an error. See the
Oxs_Driver documentation, Sec. 7.3.5 page 82, for information on checkpoint files.
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-restartfiledir dir Specifies the directory where restart files are written. The default is
determined by the environment variable 0OMMF_RESTARTFILEDIR, or if this is not set
then by OOMMF_OUTDIR. If neither environment variable is set then the default is the
directory holding the MIF file. Write access is required to the restart file directory.
Also, you may want to consider whether the restart files should be written to a local
temporary directory or a network mount.

-threads <count> The option is available on threaded (Sec. 2.3.4) builds of Oxs. The
count parameter is the number of threads to run. The default count value is set by
the oommf_thread count value in the config/platforms/ file for your platform, but
may be overridden by the 0OMMF_THREADS environment variable or this command line
option. In most cases the default count value will equal the number of processing cores
on the system; this can be checked via the command tclsh oommf.tcl +platform.

miffile Load and solve the problem found in miffile, which must be either in the MIF 2
format, or convertible to that format by mifconvert. Required.

Although Boxsi cannot be launched by mmLaunch, nonetheless a limited graphical
interactive interface for Boxsi is provided through mmLaunch, in the same manner as is
done for Oxsii. Each running instance of Boxsi is included in the Threads list of mm-
Launch, along with a checkbutton. This button toggles the presence of a user interface
window.

Inputs

Boxsi loads problem specifications directly from disk as requested on the command line.
The format for these files is the MIF 2 (Sec. 17.3) format, the same as used by the Oxsii
interactive interface. The MIF 1.1 and MIF 1.2 formats used by the 2D solver mmSolve2D
can also be input to Boxsi, which will automatically call the command line tool mifconvert
(Sec. 16.12) to convert from the MIF 1.x format to the MIF 2 format “on-the-fly.” Sample
MIF 2 files can be found in the directory oommf/app/oxs/examples.

Outputs

The lower panel of the Boxsi interactive interface presents Output, Destination, and Sched-
ule sub-windows that display the current output configuration and allow interactive modifi-
cation of that configuration. These controls are identical to those in the Oxsii user interface;
refer to the Oxsii documentation (Sec. 7.1) for details. The only difference between Boxsi
and Oxsii with respect to outputs is that in practice Boxsi tends to rely primarily on
Destination and Schedule commands in the input MIF file (Sec. 17.3.2) to setup the out-
put configuration. The interactive output interface is used for incidental runtime monitoring
of the job.
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Controls

The runtime controls provided by the Boxsi interactive interface are a restricted subset of
those available in the Oxsii interface. If the runtime controls provided by Boxsi are found
to be insufficient for a given task, consider using Oxsii instead.

The File menu holds 4 entries: Show Console, Close Interface, Clear Schedule, and Exit
Oxsii. File|Show Console brings up a Tcl shell console running off the Boxsi interface Tcl
interpreter. This console is intended primary for debugging purposes. File|Close Interface
will remove the interface window from the display, but leaves the solver running. This
effect may also be obtained by deselecting the Boxsi interface button in the Threads list
in mmLaunch. File|Clear Schedule will disable all currently active output schedules,
exactly as if the user clicked through the interactive schedule interface one output and
destination at a time and disabled each schedule-enabling checkbutton. The final entry,
File| Exit Boxsi, terminates the Boxsi solver and closes the interface window. Note that
there is no File|Load... menu item; the problem specification file must be declared on the
Boxsi command line.

The Help menu provides the usual help facilities.

The row of buttons immediately below the menu bar provides simulation progress con-
trol. These buttons—Run, Relax, Step and Pause—become active once the micromagnetic
problem has been initialized. These buttons allow the user to change the run state of the
solver. In the Pause state, the solver sits idle awaiting further instructions. If Step is se-
lected, then the solver will move forward one iteration and then Pause. In Relax mode, the
solver takes at least one step, and then runs until it reaches a stage boundary, at which point
the solver is paused. In Run mode, the solver runs until the end of the problem is reached.
When the problem end is reached, the solver will either pause or exit, depending upon the
setting of the ~exitondone command line option.

Normally the solver progresses automatically from problem initialization into Run mode,
but this can be changed by the -pause command line switch. Interactive output is available
in all modes; the scheduled outputs occur appropriately as the step and stage counts advance.

Directly below the run state control buttons are three display lines, showing the name
of the input MIF file, the current run-state, and the current stage number/maximum stage
number. Both stage numbers are 0-indexed.

Detalils

As with Oxsii, the simulation model construction is governed by the Specify blocks in the
input MIF file, and all aspects of the simulation are determined by the specified Oxs_Ext
classes (Sec. 7.3). Refer to the appropriate Oxs_Ext class documentation for simulation and
computational details.
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Threading considerations

As an example, suppose you are running on a four dual-core processor box, where each of the
four processors is connected to a separate memory node. In other words, there are eight cores
in total, and each pair of cores shares a memory node. Further assume that the processors
are connected via point-to-point links such as AMD’s HyperTransport or Intel’s QuickPath
Interconnect.

If you want to run a single instance of Boxsi as quickly as possible, you might use the
—-threads 8 option, which, assuming the default value of -numanodes none is in effect, would
allow the operating system to schedule the eight threads among the system’s eight cores as
it sees fit. Or, you might reduce the thread count to reserve one or more cores for other
applications. If the job is long running, however, you may find that the operating system
tries to run multiple threads on a single core—perhaps in order to leave other cores idle so
that they can be shut down to save energy. Or, the operating system may move threads
away from the memory node where they have allocated memory, which effectively reduces
memory bandwidth. In such cases you might want to launch Boxsi with the -numanodes
auto option. This overrides the operating systems preferences, and ties threads to particular
memory nodes for the lifetime of the process. (On Linux boxes, you should also check the
“cpu frequency governor” and “huge page support” selection and settings.)

If you want to run two instances of Boxsi concurrently, you might launch each with the
-threads 4 option, so that each job has four threads for the operating system to schedule.
If you don’t like the default scheduling by the operating system, you can use the -numanodes
option, but what you don’t want to do is launch two jobs with -numanodes auto, because
the “auto” option assigns threads to memory nodes from a fixed sequence list, so both jobs
will be assigned to the same nodes. Instead, you should manually assign the nodes, with a
different set to each job. For example, you may launch the first job with -numanodes 0,1
and the second job with -numanodes 2,3. One point to keep in mind when assigning nodes
is that some node pairs are “closer” (with respect to memory latency and bandwidth) than
others. For example, memory node 0 and memory node 1 may be directly connected via a
point-to-point link, so that data can be transferred in a single “hop.” But sending data from
node 0 to node 2 may require two hops (from node 0 to node 1, and then from node 1 to
node 2). In this case -numanodes 0,1 will probably run faster than -numanodes 0,2.

The -numanodes option is only available on Linux boxes if the “numactl” and “numactl-
devel” packages are installed. The numactl command itself can be used to tie jobs to
particular memory nodes, similar to the boxsi -numanodes option, except that -numanodes
ties threads whereas numactl ties jobs. The numactl --hardware command will tell you
how many memory nodes are in the system, and also reports a measure of the (memory
latency and bandwidth) distance between nodes. This information can be used in selecting
nodes for the boxsi -numanodes option, but in practice the distance information reported by
numactl is often not reliable. For best results one should experiment with different settings,
or run memory bandwidth tests with different node pairs.
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Batch Scheduling Systems

OOMMEF jobs submitted to a batch queuing system (e.g., Condor, PBS, NQS) can experience
sporadic failures caused by interactions between separate OOMMEF jobs running simultane-
ously on the same compute node. These problems can be prevented by using the OOMMF
command line utility launchhost (Sec. 16.10) to isolate each job.

7.3 Standard Oxs_Ext Child Classes

An Oxs simulation is built as a collection of 0xs_Ext (Oxs Extension) objects. These are
defined via Specify blocks in the input MIF 2 file (Sec. 17.3). The reader will find the
information and sample MIF file, Fig. 8, provided in that section to be a helpful adjunct to
the material presented below. Addition example MIF 2 files can be found in the directory
oommf/app/oxs/examples.

This section describes the Oxs_Ext classes available in the standard OOMMEF distribution,
including documentation of their Specify block initialization strings, and a list of some sample
MIF files from the oommf/app/oxs/examples directory that use the class. The standard
Oxs_Ext objects, i.e., those that are distributed with OOMMEF, can be identified by the Oxs_
prefix in their names. Additional Oxs_Ext classes may be available on your system. Check
local documentation for details.

In the following presentation, the Oxs_Ext classes are organized into 8 categories: atlases,
meshes, energies, evolvers, drivers, scalar field objects, vector field objects, and MIF support
classes. The following Oxs_Ext classes are currently available:

o Atlases
Oxs_BoxAtlas Oxs_ImageAtlas
Oxs_MultiAtlas Oxs_ScriptAtlas
Oxs_EllipsoidAtlas

e Meshes
Oxs_RectangularMesh Oxs_PeriodicRectangularMesh

e Energies
Oxs_CubicAnisotropy Oxs_Demag
Oxs_Exchange6Ngbr Oxs_ExchangePtwise
Oxs_FixedZeeman Oxs_RandomSiteExchange
Oxs_ScriptUZeeman Oxs_SimpleDemag
Oxs_StageZeeman Oxs_TransformZeeman
Oxs_TwoSurfaceExchange Oxs_UniaxialAnisotropy
Oxs_UniformExchange Oxs_UZeeman

e Evolvers
0Oxs_CGEvolve Oxs_EulerEvolve
Oxs_RungeKuttaEvolve Oxs_SpinXferEvolve

e Drivers
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Oxs_MinDriver

Scalar Field Objects
Oxs_AtlasScalarField
Oxs_RandomScalarField
Oxs_UniformScalarField
Oxs_ScriptOrientScalarField
Oxs_AffineTransformScalarField

e Vector Field Objects

Oxs_AtlasVectorField
Oxs_PlaneRandomVectorField
Oxs_ScriptVectorField
Oxs_ScriptOrientVectorField
Oxs_AffineTransformVectorField

Oxs_TimeDriver

Oxs_LinearScalarField
Oxs_ScriptScalarField
Oxs_VecMagScalarField
Oxs_AffineOrientScalarField
Oxs_ImageScalarField

Oxs_FileVectorField
Oxs_RandomVectorField
Oxs_UniformVectorField
Oxs_AffineOrientVectorField
Oxs_MaskVectorField

Oxs_ImageVectorField

e MIF Support Classes
Oxs_LabelValue

7.3.1 Atlases

Geometric volumes of spaces are specified in Oxs via atlases, which divide their domain into
one or more disjoint subsets called regions. Included in each atlas definition is the atlas
bounding box, which is an axes parallel rectangular parallelepiped containing all the regions.
There is also the special universe region, which consists of all points outside the regions
specified in the atlas. The universe region is not considered to be part of any atlas, and the
universe keyword should not be used to label any of the atlas regions.

The most commonly used atlas is the simple Oxs BoxAtlas. For combining multiple
atlases, use Oxs_MultiAtlas.

Oxs_BoxAtlas: An axes parallel rectangular parallelepiped, containing a single region that
is coterminous with the atlas itself. The specify block has the form

Specify Oxs_BoxAtlas:atlasname {
xrange { zmin xmax }
yrange { ymin ymaz }
zrange { zmin zmax }
name 7egionnName

}

where xmin, rmaz, ... are coordinates in meters, specifying the extents of the volume
being defined. The regionname label specifies the name assigned to the region contained
in the atlas. The name entry is optional; if not specified then the region name is taken
from the object instance name, i.e., atlasname.

Examples: sample.mif, cgtest.mif.
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Oxs_ImageAtlas: This class is designed to allow an image file to be used to define re-
gions in terms of colors in the image. It is intended for use in conjunction with the
Oxs_AtlasScalarField and Oxs_AtlasVectorField classes in circumstances where
a small number of distinct species (materials) are being modeled. This provides a
generalization of the mask file functionality of the 2D solver (Sec. 17.1.3).

For situations requiring continuous variation in material parameters, the script field
classes should be used in conjunction with the ReadFile MIF extension command.
See the ColorField sample proc in the ReadFile documentation in Sec. 17.3.2 for an
example of this technique.

The 0xs_ImageAtlas Specify block has the following form:

Specify Oxs_ImageAtlas:name {
xrange { xmin zmaz }
yrange { ymin ymazr }
zrange { zmin zmax }
viewplane wview
image pic
colormap {

color-1 region_name
color-2 region_name

color-n region_name

matcherror mazx_color_distance

}

The xrange, yrange, zrange entries specify the extent of the atlas, in meters. The
viewplane view value should be one of the three two-letter codes xy, zx or yz, which
specify the mapping of the horizontal and vertical axes of the image respectively to axes
in the simulation. The image is scaled as necessary along each dimension to match the
atlas extents along the corresponding axes. The image is overlaid through the entire
depth of the perpendicular dimension, i.e., along the axis absent from the viewplane
specification. The Oxs_ImageAtlas class can be used inside a Oxs_MultiAtlas object
to specify regions in a multilayer structure.

The image entry specifies the name of the image file to use. If the file path is relative,
then it will be taken with respect to the directory containing the MIF file. The image
format may be any of those recognized by any2ppm (Sec. 16.1). The file will be read
directly by Oxs if it is in the P3 or P6 PPM formats, otherwise any2ppm will be
automatically launched to perform the conversion.

The colormap value is an even length list of color + region name pairs. The colors
may be specified in any of several ways. The most explicit is to use one of the Tk
numeric formats, #rgb, #rrggbb, #rrrgggbbb or #rrrrggggbbbb, where each r, g, and
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b is one hex digit (i.e., 0-9 or A-F) representing the red, green and blue components
of the color, respectively. For example, #F00 is bright (full-scale) red, #800 would be
a darker red, while #FF0 and #FFFF00 would both be bright yellow. Refer to the
Tk_GetColor documentation for details. For shades of gray the special notation grayD
or greyD is available, where D is a decimal value between 0 and 100, e.g., grey0 is
black and grey100 is white. Alternatively, one may use any of the symbolic names
defined in the oommf/config/colors.config file, such as red, white and skyblue.
When comparing symbolic names, spaces and capitalization are ignored. The list of
symbolic names can be extended by adding additional files to the Color filename
option in the options.tcl customization file (Sec. 2.3.2). Finally, one color in the
colormap list may optionally be the special keyword “default”. All pixels that don’t
match any of the other specified colors (as determined by the matcherror option) are
assigned to region paired with default.

Each of the specified colors should be distinct, but the region names are allowed to be
repeated as desired. The region names may be chosen arbitrarily, except the special
keyword “universe” is reserved for points not in any of the regions. This includes all
points outside the atlas bounding box defined by the xrange, yrange, zrange entries,
but may also include points inside that boundary.

Pixels in the image are assigned to regions by comparing the color of the pixel to the
list of colors specified in colormap. If the pixel color is closer to a colormap color than
max_color_distance, then the colors are considered matched. If a pixel color matches
exactly one colormap color, then the pixel is assigned to the corresponding region. If
a pixel color matches more than one colormap color, the pixel is assigned to the region
corresponding to the closest match. If a pixel color doesn’t match any of the colormap
colors, then it is assigned to the default region, which is the region paired with the
“default” keyword. If default does not explicitly appear in the colormap colors list,
then universe is made the default region.

To calculate the distance between two colors, each color is first converted to a scaled
triplet of floating point red, green, and blue values, (r,g,b), where each component
lies in the interval [0, 1], with (0,0,0) representing black and (1,1,1) representing
white. For example, (0,0, 1) is bright blue. Given two colors in this representation, the
distance is computed using the standard Euclidean norm with uniform weights, i.e.,
the distance between (11, g1,b1) and (rq, g, by) and is

\/(7’1 — T2)2 + (91 - 92>2 + (bl — b2)2.
Since the difference in any one component is at most 1, the distance between any two
colors is at most v/3.

As explained above, two colors are considered to match if the distance between them
is less than the specified matcherror value. If max_color_distance is sufficiently small,
then it may easily happen that a pixel’s color does not match any of the specified
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region colors, so the pixel would be assigned to the default region. On the other hand,
if maz_color_distance is larger than v/3, then all colors will match, and no pixels will be
assigned to the default region. If matcherror is not specified, then the default value
for maz_color_distance is 3, which means all colors match.

The following example should help clarify these matters.

Specify Oxs_ImageAtlas:atlas {
xrange { 0 400e-9 }
yrange { 0 200e-9 }
zrange { 0 20e-9 }
image mypic.gif
viewplane "xy"
colormap {
blue cobalt
red permalloy
green universe
default cobalt

+

matcherror .1

3

Blue pixels get mapped to the “cobalt” region and red pixels to the “permalloy” region.
Green pixels are mapped to the “universe” non-region, which means they are considered
to be outside the atlas entirely. This is a fine point, but comes into play when atlases
with overlapping bounding boxes are brought together inside an Oxs_MultiAtlas. To
which region would an orange pixel be assigned? The scaled triplet representation for
orange is (1,0.647,0), so the distance to blue is 1.191, the distance to red is 0.647,
and the distance to green is 1.06. Thus the closest color is red, but 0.647 is outside
the matcherror setting of 0.1, so orange doesn’t match any of the colors and is hence
assigned to the default region, which in this case is cobalt. On the other hand, if
matcherror had been set to say 1, then orange and red would match and orange
would be assigned to the permalloy region.

Pixels with colors that are equidistant to and match more than one color in the col-
ormap will be assigned to one of the closest color regions. The user should not rely on
any particular selection, that is to say, the explicit matching procedure in this case is
not defined.

Examples: imageatlas.mif, grill.mif.

Oxs_MultiAtlas: This atlas is built up as an ordered list of other atlases. The set of regions
defined by the Oxs MultiAtlas is the union of the regions of all the atlases contained
therein. The sub-atlases need not be disjoint, however each point is assigned to the
region in the first sub-atlas in the list that contains it, so the regions defined by the
Oxs MultiAtlas are effectively disjoint.
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The 0xs MultiAtlas specify block has the form

Specify Oxs MultiAtlas:name {
atlas  atlas_1_spec
atlas  atlas_2_spec

xrange { xmin zmaz }
yrange { ymin ymazx }
zrange { zmin zmax }

}

Each atlas_spec may be either a reference to an atlas defined earlier and outside the
current Specify block, or else an inline, embedded atlas definition. The bounding box
xrange, yrange and zrange specifications are each optional. If not specified the
corresponding range for the atlas bounding box is taken from the minimal bounding
box containing all the sub-atlases.

If the atlases are not disjoint, then the regions as defined by an Oxs MultiAtlas can
be somewhat different from those of the individual component atlases. For example,
suppose regionA is a rectangular region in atlasA with corner points (5,5,0) and
(10,10,10), and regionB is a rectangular region in atlasB with corner points (0,0,0) and
(10,10,10). When composed in the order atlasA, atlasB inside an Oxs MultiAtlas,
regionA reported by the Oxs_MultiAtlas will be the same as regionA reported by
atlasA, but regionB as reported by the Oxs_MultiAtlas will be the “L” shaped
volume of those points in atlasB’s regionB not inside regionA. If the Oxs_MultiAtlas
is constructed with atlasB first and atlasA second, then regionB as reported by the
Oxs_MultiAtlas would agree with that reported by atlasB, but regionA would be
empty.

NOTE: The attributes key label (cf. Sec. 17.3.3.5) is not supported by this class.

Examples: manyregions-multiatlas.mif, spinvalve.mif, spinvalve-af.mif, yoyo.mif.

Oxs_ScriptAtlas: An atlas where the regions are defined via a Tcl script. The specify
block has the form

Specify Oxs_ScriptAtlas:name {
xrange { zmin zmaz }
yrange { ymin ymazx }
zrange { zmin zmax }
regions { rname_1 rname_2 ... rname.n }
script_args { args_request }
script Tecl_script
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Here zmin, xmax, ... are coordinates in meters, specifying the extents of the axes-
parallel rectangular parallelepiped enclosing the total volume being identified. This
volume is subdivided into n sub-regions, using the names as given in the regions list.
The script is used to assign points to the various regions. Appended to the script are
the arguments requested by script_args, in the manner explained in the User Defined
Support Procedures section (Sec. 17.3.3.6) of the MIF 2 file format documentation.
The value args_request should be a subset of {relpt rawpt minpt maxpt span}. If
script_args is not specified, the default value relpt is used. When executed, the
return value from the script should be an integer in the range 1 to n, indicating the
user-defined region in which the point lies, or else 0 if the point is not in any of the
n regions. Region index 0 is reserved for the implicit “universe” region, which is all-
encompassing. The following example may help clarify the discussion:

proc Octs { cellsize x y z xmin ymin zmin xmax ymax zmax } {
set xindex [expr {int(floor(($x-$xmin)/$cellsize))}]
set yindex [expr {int(floor(($y-$ymin)/$cellsize))}]
set zindex [expr {int(floor(($z-$zmin)/$cellsize))}]
set octant [expr {1+$xindex+2x$yindex+4*$zindex}]
if {$octant<1l || $octant>8} {
return O

}

return $octant

Specify Oxs_ScriptAtlas:octant {
xrange {-20e-9 20e-9}
yrange {-20e-9 20e-9}
zrange {-20e-9 20e-9}
regions { VIII V VII VI IV I III IT }
script_args { rawpt minpt maxpt }
script { Octs 20e-9 }

}

This atlas divides the rectangular volume between (—20,—20,—20) and (20,20, 20)
(nm) into eight regions, corresponding to the standard octants, I through VIII. The
Octs Tcl procedure returns a value between 1 and 8, with 1 corresponding to octant
VIII and 8 to octant II. The canonical octant ordering starts with I as the +x, +y, +2
space, proceeds counterclockwise in the +2z half-space, and concludes in the —z half-
space with V directly beneath I, VI beneath II, etc. The ordering computed algorith-
mically in Octs starts with 1 for the —x, —y, —z space, 2 for the 4z, —y, —z space, 3
for the —z, +y, —z space, etc. The conversion between the two systems is accomplished
by the ordering of the regions list.

Examples: manyregions-scriptatlas.mif, octant.mif, tclshapes.mif, diskarray.mif,
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ellipsoid-atlasproc.mif.

Oxs_Ellipsoid Atlas: Defines an ellipsoidal region with axes parallel to the coordinate axes.
This functionality can be obtained using the Oxs_ScriptAtlas class with an appropri-
ate Tcl script, but this class is somewhat easier to use and faster. The Specify block
has the form

Specify Oxs EllipsoidAtlas:atlasname {
xrange { zmin xmax }
yrange { ymin ymazx }
zrange { zmin zmax }
name 7egionname

}

Here zmin, xmaz, ... are coordinates in meters, specifying the bounding box for the
ellipsoid. The layout of the Specify block is exactly the same as for the Oxs_BoxAtlas
class, except that in this case the named region is not the whole bounding box but
rather that subvolume that is the interior of the ellipsoid inscribed inside the bounding
box. Points exterior to that ellipsoid are assigned to the “universe” region.

As in the Oxs_BoxAtlas case, the regionname entry is optional; if missing, the region
name is taken from the object instance name, i.e., atlasname.

Example: ellipsoid.mif. See also ellipsoid-atlasproc.mif and
ellipsoid-fieldproc.mif for equivalent examples using Tcl scripts.

7.3.2 Meshes

Meshes define the discretization impressed on the simulation. There should be exactly one
mesh declared in a MIF 2 file. The usual (finite) mesh type is Oxs_RectangularMesh. For
simulations that are periodic along one or more axes, use the Oxs_PeriodicRectangularMesh

type.

Oxs_RectangularMesh: This mesh is comprised of a lattice of rectangular prisms. The
specify block has the form

Specify Oxs_RectangularMesh:name {
cellsize { wstep ystep zstep }
atlas atlas_spec

}

This creates an axes parallel rectangular mesh across the entire space covered by atlas.
The mesh sample rates along each axis are specified by cellsize (in meters). The mesh
is cell-based, with the center of the first cell one half step in from the minimal extremal
point (xmin,ymin,ymax) for atlas_spec. The name is commonly set to “mesh”, in which
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case the mesh object may be referred to by other Oxs_Ext objects by the short name
:mesh.

Examples: sample.mif, stdprob3.mif, stdprob4.mif.

Oxs_PeriodicRectangularMesh: Like the Oxs_RectangularMesh, this mesh is also com-
prised of a lattice of rectangular prisms. However, in this case the mesh is declared to
be periodic along one or more of the axis directions. The specify block has the form

Specify Oxs PeriodicRectangularMesh:name {
cellsize { wstep ystep zstep }
atlas atlas_spec
periodic periodic_azxes

}

The atlas and cellsize values are the same as for the Oxs_RectangularMesh class. The

(S} Uy,

periodic_azis value should be a string consisting of one or more of the letters “x”, “y”,
or “z”, denoting the periodic direction(s). Oxs_Ext objects that are incompatible with
Oxs_PeriodicRectangularMesh will issue an error message at runtime. In particular,
the Oxs_Demag class supports periodicity in none or one direction, but not more. Also,
some third-party extensions provide independent periodicity support using the older

Oxs_RectangularMesh class rather than Oxs_PeriodicRectangularMesh.

Examples: pbcbrick.mif, pbcstripes.mif.

7.3.3 Energies

The following subsections describe the available energy terms. In order to be included in
the simulation energy and field calculations, each energy term must be declared in its own,
top-level Specify block, i.e., energy terms should not be declared inline inside other Oxs_Ext
objects. There is no limitation on the number of energy terms that may be specified in the
input MIF file. Many of these terms have spatially varying parameters that are initialized
via field_object_spec entries (Sec. 7.3.6) in their Specify initialization block (see Sec. 17.3.3.2).

Outputs: For each magnetization configuration, three standard outputs are provided by
all energy terms: the scalar output “Energy,” which is the total energy in joules contributed
by this energy term, the scalar field output “Energy density,” which is a cell-by-cell map of
the energy density in J/m?, and the three-component vector field output “Field,” which is
the pointwise field in A/m. If the code was compiled with the macro NDEBUG not defined,
then there will be an additional scalar output, “Calc count,” which counts the number of
times the term has been calculated in the current simulation. This is intended for debugging
purposes only; this number should agree with the “Energy calc count” value provided by the
evolver.

e Anisotropy Energy
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Oxs_UniaxialAnisotropy: Uniaxial magneto-crystalline anisotropy. The Specify block
has the form

Specify Oxs UniaxialAnisotropy:mname {
K1 K
Ha H

axis u
}

Exactly one of either K1 or Ha should be specified, where K1 is the crystalline
anisotropy constant (in J/m?), and Ha is the anistropy field (in A/m). In either
case, axis is the anisotropy direction. K1, Ha, and axis may each be varied
cellwise across the mesh: K1 and Ha are initialized with scalar field objects,
while axis takes a vector field object. (A constant value will be interpreted as a
uniform field object having the stated value, as usual.) The axis direction must
be non-zero at each point, and will be normalized to unit magnitude before being
used.

The axis direction is an easy axis if K1 (or Ha) is >0, in which case the cellwise
anisotropy energy density (in J/m?) is given by
2 1 2
Ei = Kl(l —1m,; - ui) or 5 /,LoMSHZ(l —1m,; - ul) y
respectively. (Here m; is the unit magnetization and M; the saturation magneti-
zation in cell 7.) Otherwise, if K1 (or Ha) is < 0, the axis direction is the normal
to the easy plane and the cellwise anisotropy energy density is given by
1
Ei = —Kl(mz . ui)2 or — 5 ,qust(mz . ui)2.
The formulae in the two cases (easy axis vs. easy plane) differ by a constant offset,
and in each case the energy is non-negative.

Examples: diskarray.mif, stdprob3.mif, grill.mif.

Oxs_CubicAnisotropy: Cubic magneto-crystalline anisotropy. The Specify block
has the form

Specify Oxs_CubicAnisotropy:name {
K1 K
Ha H
axisl uy
axis2 wug

}

Exactly one of either K1 or Ha should be specified, where K1 is the crystalline
anisotropy constant (in J/m?), and Ha is the anistropy field (in A/m). In either
case, axisl and axis2 are two anisotropy directions; the third anisotropy axis

o4



us is computed as the vector product, u; X us. For each cell, the axis directions
are easy axes if K1 (or Ha) is >0, or hard axes if K1 (or Ha) is <0. All may
be varied cellwise across the mesh. K1 or Ha is initialized with a scalar field
object, and the axis directions are initialized with vector field objects. (Constant
values will be interpreted as uniform fields with the indicated value, as usual.)
The axisl and axis2 directions must be mutually orthogonal and non-zero at
each point (u; and usy are automatically scaled to unit magnitude before use).

The anisotropy energy density (in J/m?) for cell 7 is given by
E =K; (afag + asa; + a%a%) :

or
1
E; = 3 poMH; (a%a% + asa; + a%a%) ,

where a; = m-uy, as = m-uy, ag = m-ug, for reduced (normalized) magnetization
m and orthonormal anisotropy axes uj, us, and us at cell 7. In the second form,
M is the saturation magnetization in cell i. For each cell, if K1 (resp. Ha) is >0
then the computed energy will be non-negative, otherwise for K1 (resp. Ha) <0
the computed energy will be non-positive.

Examples: cgtest.mif, sample2.mif, grill.mif.
e Exchange Energy

Oxs_Exchange6Ngbr: Standard 6-neighbor exchange energy. The exchange energy
density contribution from cell 7 is given by

£ =y 4, o) )
ij

JEN;

where NV; is the set consisting of the 6 cells nearest to cell ¢, A;; is the exchange
coeflicient between cells ¢ and j in J/m, and A;; is the discretization step size
between cell i and cell j (in meters).

The Specify block for this term has the form

Specify Oxs_Exchange6Ngbr:name {
default_A wvalue
atlas atlas_spec

A {
region-1 region-1 Aqq
region-1 region-2 Ais

region-m region-n A,
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or

Specify Oxs_Exchange6Ngbr:name {
default_lex walue
atlas atlas_spec
lex {
region-1 region-1 lexy,
region-1 region-2 lex,o

region-m region-n leT,,

}

where lex specifies the magnetostatic-exchange length, in meters, defined by lex =
\ 24/ (o M3).

In the first case, the A block specifies A;; values on a region by region basis, where
the regions are labels declared by atlas_spec. This allows for specification of A both
inside a given region (e.g., A;;) and along interfaces between regions (e.g., A;;).
By symmetry, if A;; is specified, then the same value is automatically assigned to
Aj; as well. The default_A value is applied to any otherwise unassigned A;;.

In the second case, one specifies the magnetostatic-exchange length instead of A,
but the interpretation is otherwise analogous.

Although one may specify A;; (resp. lex;;) for any pair of regions ¢ and j, it is only
required and only active if the region pair are in contact. If long-range exchange
interaction is required, use Oxs_TwoSurfaceExchange.

In addition to the standard energy and field outputs, Oxs_Exchange6Ngbr provides
three scalar outputs involving the angle between spins at neighboring cells:

— Max Spin Ang: maximum angle, in degrees, between neigboring spins for
the current magnetization state.

— Stage Max Spin Ang: Maximum value of Max Spin Ang for the current
stage.

— Run Max Spin Ang: Maximum value obtained by Max Spin Ang during
the simulation.

Examples: grill.mif, spinvalve.mif, tclshapes.mif.

Oxs_UniformExchange: Similar to Oxs_Exchange6Ngbr, except the exchange con-
stant A (or exchange length lex) is uniform across all space. The Specify block is
very simple, consisting of either the label A with the desired exchange coefficient
value in J/m, or the label lex with the desired magnetostatic-exchange length in
meters. Since A (resp. lex) is not spatially varying, it is initialized with a simple
constant (as opposed to a scalar field object).

In addition to the standard energy and field outputs, Oxs_UniformExchange pro-
vides the three scalar outputs Max Spin Ang, Stage Max Spin Ang, and Run Max
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Spin Ang as described for Oxs_Exchange6Ngbr.
Examples: sample.mif, cgtest.mif, stdprob3.mif.

Oxs_ExchangePtwise: The exchange coefficient A; is specified on a point-by-point
(or cell-by-cell) basis, as opposed to the pairwise specification model used by

Oxs_Exchange6Ngbr. The exchange energy density at a cell ¢ is computed across
its nearest 6 neighbors, NV;, using the formula

E; = Z Ajj off m, - (m; — m,)

2

where A;; is the discretization step size from cell 7 to cell j in meters, and

2A; A,

Agjor = 1,
7T A+ A,

with Aij,eﬁ =0if Al and Aj are 0.
Note that A;; s satisfies the following properties:

Aij,eff = Aji,eff
Aij@ﬁf = Az if AZ:AJ

lim A;; = 0.
A510 i7,eff

Additionally, if A; and A; are non-negative,
I'IliIl(Ai, AJ> S Aij,eﬂ S maX(Ai, AJ)

Evaluating the exchange energy with this formulation of A;;.s is equivalent to
finding the minimum possible exchange energy between cells ¢+ and j under the
assumption that A; and A; are constant in each of the two cells. Similar consid-
erations are made in computing the exchange energy for a 2D variable thickness
model [16].

The Specify block for O0xs_ExchangePtwise has the form

Specify Oxs ExchangePtwise:name {
A scalarfield_spec
}

where scalarfield_spec is an arbitrary scalar field object (Sec. 7.3.6) returning the
desired exchange coefficient in J/m.

In addition to the standard energy and field outputs, Oxs_ExchangePtwise pro-
vides the three scalar outputs Max Spin Ang, Stage Max Spin Ang, and Run Max
Spin Ang as described for Oxs_Exchange6Ngbr.

Example: antidots-filled.mif.
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Oxs_TwoSurfaceExchange: Provides long-range bilinear and biquadratic exchange.
Typically used to simulate RKKY-style coupling across non-magnetic spacers in
spinvalves. The specify block has the form

Specify Oxs_TwoSurfaceExchange:name {

sigma wvalue

sigma2 wvalue

surfacel {
atlas atlas_spec
region region_label
scalarfield scalarfield_spec
scalarvalue fieldvalue
scalarside sign

}

surface2 {
atlas atlas_spec
region region_label
scalarfield scalarfield_spec
scalarvalue fieldvalue
scalarside sign

}

Here sigma and sigma?2 are the bilinear and biquadratic surface (interfacial)
exchange energies, in J/m?. Either is optional, with default value 0.

The surfacel and surface2 sub-blocks describe the two interacting surfaces.
Each description consists of 5 name-values pairs, which must be listed in the
order shown. In each sub-block, atlas_spec specifies an atlas, and region_label
specifies a region in that atlas. These bound the extent of the desired surface. The
following scalarfield, scalarvalue and scalarside entries define a discretized
surface inside the bounding region. Here scalarfield_spec references a scalar field
object, fieldvalue should be a floating point value, and sign should be a single
character, either ‘—’ or ‘4. If sign is ‘—’, then any point for which the scalar field
object takes a value less than or equal to the scalarvalue value is considered to
be “inside” the surface. Conversely, if sign is ‘4+’, then any point for which the
scalar field object has value greater than or equal to the scalarvalue value is
considered to be “inside” the surface. The discretized surface determined is the
set of all points on the problem mesh that are in the bounding region, are either
on the surface or lie on the “inside” side of the surface, and have a (nearest-)
neighbor that is on the “outside” side of the surface. A “neighbor” is determined
by the mesh; in a typical rectangular mesh each cell has six neighbors.

In this way, 2 discrete lists of cells representing the two surfaces are obtained.
Each cell from the first list (representing surfacel) is then matched with the
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closest cell from the second list (i.e., from surface2). Note the asymmetry in this
matching process: each cell from the first list is included in exactly one match,
but there may be cells in the second list that are included in many match pairs,
or in none. If the two surfaces are of different sizes, then in practice typically
the smaller will be made the first surface, because this will usually lead to fewer
multiply-matched cells, but this designation is not required.

The resulting exchange energy density at cell ¢ on one surface from matching cell
j on the other is given by

o[l —m; - m;] + oy {1 — (mi'mj)ﬂ

A

Eij = ;
ij

where o and oy, respectively, are the bilinear and biquadratic surface exchange
coefficients between the two surfaces, in J/m?, m; and m; are the normalized, unit
spins (i.e., magnetization directions) at cells ¢ and j, and A;; is the discretization
cell size in the direction from cell ¢ towards cell j, in meters. Note that if o is
negative, then the surfaces will be anti-ferromagnetically coupled. Likewise, if oq
is negative, then the biquadratic term will favor orthogonal alignment.

The following example produces an antiferromagnetic exchange coupling between
the lower surface of the “top” layer and the upper surface of the “bottom” layer,
across a middle “spacer” layer. The simple Oxs_LinearScalarField object is
used here to provide level surfaces that are planes orthogonal to the z-axis. In
practice this example might represent a spinvalve, where the top and bottom
layers would be composed of ferromagnetic material and the middle layer could
be a copper spacer.

Specify Oxs_MultiAtlas:atlas {

atlas { Oxs_BoxAtlas {
name top
xrange {0 500e-9%}
yrange {0 250e-9%}
zrange {6e-9 9e-9}

F}

atlas { Oxs_BoxAtlas {
name spacer
xrange {0 500e-9%}
yrange {0 250e-9%}
zrange {3e-9 6e-9}

P}

atlas { Oxs_BoxAtlas {
name bottom
xrange {0 500e-9}
yrange {0 250e-9%}
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zrange {0 3e-9}
F}

Specify Oxs_LinearScalarField:zheight {
vector {0 0 1}
norm 1.0

Specify Oxs_TwoSurfaceExchange:AF {
sigma -le-4
surfacel {
atlas :atlas
region bottom
scalarfield :zheight
scalarvalue 3e-9
scalarside -
+
surface2 {
atlas :atlas
region top
scalarfield :zheight
scalarvalue 6e-9
scalarside +

3

In addition to the standard energy and field outputs, Oxs_TwoSurfaceExchange
provides the three scalar outputs Max Spin Ang, Stage Max Spin Ang, and Run
Max Spin Ang as described for Oxs_Exchange6Ngbr.

Example: spinvalve-af.mif.

Oxs_RandomSiteExchange: A randomized exchange energy. The Specify block has
the form

Specify Oxs_RandomSiteExchange:name {
linkprob probability
Amin A_lower_bound
Amax A_upper_bound

}

Each adjacent pair of cells 7, j, is given linkprob probability of having a non-zero
exchange coefficient A;;. Here two cells are adjacent if they lie in each other’s 6-
neighborhood. If a pair is found to have a non-zero exchange coefficient, then A;;
is drawn uniformly from the range [Amin, Amax]. The exchange energy is computed
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using (1), the formula used by the Oxs_Exchange6Ngbr energy object. The value
A;; for each pair of cells is determined during problem initialization, and is held
fixed thereafter. The limits A_lower_bound and A_upper_bound may be any real
numbers; negative values may be used to weaken the exchange interaction arising
from other exchange energy terms. The only restriction is that A_lower_bound
must not be greater than A_upper_bound. The linkprob value probability must
lie in the range [0, 1].

In addition to the standard energy and field outputs, Oxs_RandomSiteExchange
provides the three scalar outputs Max Spin Ang, Stage Max Spin Ang, and Run
Max Spin Ang as described for Oxs_Exchange6Ngbr.

Example: randexch.mif.
e Self-Magnetostatic Energy

Oxs_Demag: Standard demagnetization energy term, built upon the assumption that
the magnetization is constant in each cell. It computes the average demagneti-
zation field in each cell using formulae from [2, 15] and convolution via the Fast
Fourier Transform. This class supports non-periodic simulations if the mesh ob-
ject in the MIF file is of the Oxs_RectangularMesh type; simulations periodic
along one axis direction are also supported when using the Oxs_PeriodicRectangularMesh
class. Periodicity in more than one direction is not supported at this time. The
specify block has the form

Specify Oxs_Demag:name {
asymptotic_radius radius
}

The analytic formulae used to compute the demag kernel are computationally ex-
pensive and inaccurate at large offsets. At offsets larger than radius (measured in
cells) asymptotic approximations are used instead. If asymptotic_radius is not
specified, then the default value 32 is used. For non-periodic simulations, setting
radius to -1 causes the analytic formulae to be used at all offsets. The example file
demagtensor.mif can be used to extract the computed demagnetization tensor
coefficients for a specified cell geometry; see the description at the top of that file
for usage details.

Examples: sample.mif, cgtest.mif, pbcbrick.mif, demagtensor.mif.

Oxs_SimpleDemag: This is the same as the Oxs_Demag object, except that periodic-
ity is not supported and asymptotic formulae are not used. The implementation
does not use any of the symmetries inherent in the demagnetization kernel, or
special properties of the Fourier Transform when applied to a real (non-complex)
function. As a result, the source code is considerably simpler than for Oxs_Demag,
but the run time performance and memory usage are poorer. Oxs_SimpleDemag is
included for validation checks, and as a base for user-defined demagnetization im-
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plementations. The Specify initialization string for Oxs_SimpleDemag is an empty
string, i.e., {}.

Example: squarecubic.mif.
e Zeeman Energy

Oxs_UZeeman: Uniform (homogeneous) applied field energy. This class is frequently
used for simulating hysteresis loops. The specify block takes an optional multi-
plier entry, and a required field range list Hrange. The field range list should be
a compound list, with each sublist consisting of 7 elements: the first 3 denote the
x, y, and z components of the start field for the range, the next 3 denote the x,
y, and z components of the end field for the range, and the last element specifies
the number of (linear) steps through the range. If the step count is 0, then the
range consists of the start field only. If the step count is bigger than 0, then the
start field is skipped over if and only if it is the same field that ended the previous
range (if any).

The fields specified in the range entry are nominally in A/m, but these values
are multiplied by multiplier, which may be used to effectively change the units.
For example,

Specify 0Oxs_UZeeman {
multiplier 795.77472
Hrange {

The applied field steps between 0 mT, 5 mT, 10 mT and back to 0 mT, for four
stages in total. If the first field in the second range sublist was different from the
second field in the first range sublist, then a step would have been added between
those field values, so five stages would have resulted. In this example, note that
795.77472=0.001/ 1.
In addition to the standard energy and field outputs, the Oxs_UZeeman class pro-
vides these four scalar outputs:

— B: Magnitude of the applied field, in mT. This is a non-negative quantity.

— Bx: Signed amplitude of the z-component of the applied field, in mT.

— By: Signed amplitude of the y-component of the applied field, in mT.

— Baz: Signed amplitude of the z-component of the applied field, in mT.

Examples: sample.mif, cgtest.mif, marble.mif.

Oxs_FixedZeeman: Non-uniform, non-time varying applied field. This can be used
to simulate a biasing field. The specify block takes one required parameter, which
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defines the field, and one optional parameter, which specifies a multiplication
factor.

Specify Oxs_FixedZeeman:name {
field wector_field_spec
multiplier multiplier

}

The default value for multiplier is 1.

Examples: spinvalve.mif, spinvalve-af.mif, yoyo.mif.

Oxs_ScriptUZeeman: Spatially uniform applied field, potentially varying as a func-
tion of time and stage, determined by a Tcl script. The Specify block has the
form

Specify Oxs_ScriptUZeeman:name {
script_args { args_request }
script Tel script
multiplier multiplier
stage_count number_of_stages

}

Here script indicates the Tcl script to use. The script is called once each itera-
tion. Appended to the script are the arguments requested by script_args, in the
manner explained in the User Defined Support Procedures section (Sec. 17.3.3.6)
of the MIF 2 file format documentation. The value args_request should be a subset
of {stage stage time total_time}. If script_args is not specified, the default
argument list is the complete list in the aforementioned order. The units for the
time arguments are seconds.

The return value from the script should be a 6-tuple of numbers, {Hx, Hy, Hz, dHx,
dHy, dHz}, representing the applied field and the time derivative of the applied
field. The field as a function of time must be differentiable for the duration of
each stage. Discontinuities are permitted between stages. If a time evolver is
being used, then it is very important that the time derivative values are correct;
otherwise the evolver will not function properly. This usual symptom of this
problem is a collapse in the time evolution step size.

The field and its time derivative are multiplied by the multiplier value before
use. The final field value should be in A/m; if the Tcl script returns the field
in T, then a multiplier value of 1/ug (approx. 795774.72) should be applied to
convert the Tcl result into A/m. The default value for multiplier is 1.

The stage_count parameter informs the Oxs Driver (Sec. 7.3.5) as to how many
stages the Oxs_ScriptUZeeman object wants. A value of 0 (the default) indicates
that the object is prepared for any range of stages. The stage_count value given
here must be compatible with the stage_count setting in the driver Specify block
(q.v.).
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The following example produces a sinusoidally varying field of frequency 1 GHz
and amplitude 800 A/m, directed along the z-axis.

proc SineField { total_time } {
set PI [expr {4xatan(1.)}]
set Amp 800.0
set Freq [expr {1e9*(2x$PI)}]
set Hx [expr {$Amp*sin($Freq*$total_time)}]
set dHx [expr {$Amp*$Freq*cos($Freq*$total_time)}]
return [list $Hx O 0 $dHx 0 O]

Specify Oxs_ScriptUZeeman {
script_args total_time
script SineField

3

In addition to the standard energy and field outputs, the Oxs_ScriptUZeeman
class provides these four scalar outputs:

— B: Magnitude of the applied field, in mT. This is a non-negative quantity.
— Bx: Signed amplitude of the z-component of the applied field, in mT.
— By: Signed amplitude of the y-component of the applied field, in mT.
— Baz: Signed amplitude of the z-component of the applied field, in mT.

Examples: acsample.mif, pulse.mif, rotate.mif, varalpha.mif, yoyo.mif.

Oxs_TransformZeeman: Essentially a combination of the Oxs FixedZeeman and
Oxs_ScriptUZeeman classes, where an applied field is produced by applying a
spatially uniform, but time and stage varying linear transform to a spatially vary-
ing but temporally static field. The transform is specified by a Tcl script.

The Specify block has the form

Specify Oxs_TransformZeeman:name {
field wector_field_spec
type transform_type
script Tel_script
script_args { args_request }
multiplier multiplier
stage_count number_of_stages

}

The field specified by vector_field_spec is evaluated during problem initialization
and held throughout the life of the problem. On each iteration, the specified
Tecl script is called once. Appended to the script are the arguments requested
by script_args, as explained in the User Defined Support Procedures section
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(Sec. 17.3.3.6) of the MIF 2 file format documentation. The value for script_args
should be a subset of {stage stage time total time}. The default value for
script_args is the complete list in the aforementioned order. The time arguments
are specified in seconds.

The script return value should define a 3x3 linear transform and its time deriva-
tive. The transform must be differentiable with respect to time throughout
each stage, but is allowed to be discontinuous between stages. As noted in the
Oxs_ScriptUZeeman documentation, it is important that the derivative informa-
tion be correct. The transform is applied pointwise to the fixed field obtained
from vector_field_spec, which is additionally scaled by multiplier. The multiplier
entry is optional, with default value 1.0.

The type transform_type value declares the format of the result returned from the
Tcl script. Recognized formats are identity, diagonal, symmetric and general.
The most flexible is general, which indicates that the return from the Tcl script
is a list of 18 numbers, defining a general 3x3 matrix and its 3x3 matrix of time
derivatives. The matrices are specified in row-major order, i.e., M; 1, Mo, M 3,
My 1, My, .... Of course, this is a long list to construct; if the desired transform
is symmetric or diagonal, then the type may be set accordingly to reduce the size
of the Tcl result string. Scripts of the symmetric type return 12 numbers, the 6
upper diagonal entries in row-major order, i.e., My 1, Mo, M3, Mao, Mas, M3,
for both the transformation matrix and its time derivative. Use the diagonal
type for diagonal matrices, in which case the Tcl script result should be a list of
6 numbers.

The simplest transform_type is identity, which is the default. This identifies
the transform as the identity matrix, which means that effectively no trans-
form is applied, aside from the multiplier option which is still active. For
the identity transform type, script and script_args should not be specified,
and Oxs_TransformZeeman becomes a clone of the Oxs_FixedZeeman class.

The following example produces a 1000 A /m field that rotates in the xy-plane at
a frequency of 1 GHz:

proc Rotate { freq stage stagetime totaltime } {
global PI
set w [expr {$freq*2*$PI}]
set ct [expr {cos($wx$totaltime)}]

set mct [expr {-1*$ct}] ;# "mct" is "minus cosine (w)t"
set st [expr {sin($w*x$totaltime)}]
set mst [expr {-1*$st}] ;# "mst" is "minus sine (w)t"
return [list $ct $mst 0 \
$st $ct 0\
0O O 1\

[expr {$w*$mst}] [expr {$w*$mct}] O \
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[expr {$w*x$ct}] [expr {$w*x$mst}] 0 \
0 0 0]

Specify Oxs_TransformZeeman {
type general
script {Rotate 1e9}
field {0 1000. 0}

b

This particular effect could be obtained using the Oxs_ScriptUZeeman class, be-
cause the field is uniform. But the field was taken uniform only to simplify the
example. The vector_field_spec may be any Oxs vector field object (Sec. 7.3.6).
For example, the base field could be large in the center of the sample, and decay
towards the edges. In that case, the above example would generate an applied
rotating field that is concentrated in the center of the sample.

The stage_count parameter informs the Oxs Driver (Sec. 7.3.5) as to how many
stages the Oxs_TransformZeeman object wants. A value of 0 (the default) indi-
cates that the object is prepared for any range of stages. The stage_count value
given here must be compatible with the stage_count setting in the driver Specify
block (q.v.).

Examples: sample2.mif, tickle.mif, rotatecenter.mif.

Oxs_StageZeeman: The Oxs_StageZeeman class provides spatially varying applied
fields that are updated once per stage. In its general form, the field at each stage
is provided by an Oxs vector field object (Sec. 7.3.6) determined by a user supplied
Tecl script. There is also a simplified interface that accepts a list of vector field
files (Sec. 19), one per stage, that are used to specify the applied field.

The Specify block takes the form

Specify Oxs_StageZeeman:name {
script Tel_script
files { list_of files }
stage_count number_of_stages
multiplier multiplier

}

The initialization string should specify either script or files, but not both. If
a script is specified, then each time a new stage is started in the simulation,
a Tcl command is formed by appending to Tcl_script the 0-based integer stage
number. This command should return a reference to an Oxs_VectorField object,
as either the instance name of an object defined via a top-level Specify block
elsewhere in the MIF file, or as a two item list consisting of the name of an
Oxs_VectorField class and an appropriate initialization string. In the latter case
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the Oxs_VectorField object will be created as a temporary object via an inlined
Specify call.
The following example should help clarify the use of the script parameter.

proc SlidingField { xcutoff xrel yrel zrel } {
if {$xrel>$xcutoff} { return [list 0. 0. 0.] }
return [list 2e4 0. 0.]

proc SlidingFieldSpec { stage } {
set xcutoff [expr {double($stage)/10.7}]
set spec Oxs_ScriptVectorField
lappend spec [subst {
atlas :atlas
script {SlidingField $xcutoff}
]

return $spec

Specify Oxs_StageZeeman {
script SlidingFieldSpec
stage_count 11

3

The SlidingFieldSpec proc is used to generate the initialization string for an
Oxs_ScriptVectorField vector field object, which in turn uses the S1idingField
proc to specify the applied field on a position-by-position basis. The resulting
field will be 2 x 10* A/m in the positive x-direction at all points with relative
x-coordinate larger than $stage/10., and 0 otherwise. $stage is the stage index,
which here is one of 0, 1, ..., 10. For example, if $stage is 5, then the left half of
the sample will see a 2 x 10* A/m field directed to the right, and the right half of
the sample will see none. The return value from SlidingFieldSpec in this case

will be

Oxs_ScriptVectorField {
atlas :atlas
script {SlidingField 0.5}
}
The :atlas reference is to an Oxs_Atlas object defined elsewhere in the MIF file.
The stage_count parameter lets the Oxs_Driver (Sec. 7.3.5) know how many
stages the Oxs_StageZeeman object wants. A value of 0 indicates that the object
is prepared for any range of stages. Zero is the default value for stage_count
when using the Tecl_script interface. The stage_count value given here must be
compatible with the stage_count setting in the driver Specify block (q.v.).
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The example above made use of two scripts, one to specify the Oxs VectorField
object, and one used internally by the Oxs_ScriptVectorField object. But any
Oxs_VectorField class may be used, as in the next example.

proc FileField { stage } {
set filelist { field-a.ohf field-b.ohf field-c.ohf }
set spec Oxs_FileVectorField
lappend spec [subst {
atlas :atlas
file [lindex $filelist $stage]
]

return $spec

Specify Oxs_StageZeeman {
script FileField
stage_count 3

3

The FileField proc yields a specification for an 0xs FileVectorField object
that loads one of three files, field-a.ohf, field-b.ohf, or field-c.ohf, de-
pending on the stage number.

Specifying applied fields from a sequence of files is common enough to warrant a
simplified interface. This is the purpose of the files parameter:

Specify Oxs_StageZeeman {
files { field-a.ohf field-b.ohf field-c.ohf }
}

This is essentially equivalent to the preceding example, with two differences. First,
stage_count is not needed because Oxs_StageZeeman knows the length of the list
of files. You may specify stage_count, but the default value is the length of the
files list. This is in contrast to the default value of 0 when using the script
interface. If stage_count is set larger than the file list, then the last file is repeated
as necessary to reach the specified size.

The second difference is that no Oxs_Atlas is specified when using the files
interface. The Oxs_FileVectorField object spatially scales the field read from
the file to match a specified volume. Typically a volume is specified by explicit
reference to an atlas, but with the files interface to Oxs_StageZeeman the file
fields are implicitly scaled to match the whole of the meshed simulation volume.
This is the most common case; to obtain a different spatial scaling use the script
interface as illustrated above with a different atlas or an explicit x/y/z-range
specification.

The list_of files value is interpreted as a grouped list. See the notes in Sec. 17.3.3.3
for details on grouped lists.
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The remaining Oxs_StageZeeman parameter is multiplier. The value of this
parameter is applied as a scale factor to the field magnitude on a point-by-point
basis. For example, if the field returned by the Oxs VectorField object were
in Oe, instead of the required A/m, then multiplier could be set to 79.5775
to perform the conversion. The direction of the applied field can be reversed by
supplying a negative multiplier value.

In addition to the standard energy and field outputs, the Oxs_StageZeeman class
provides these four scalar outputs:

— B max: Pointwise maximum magnitude of the applied field, in mT. This is

a non-negative quantity; B max = \/(BX max)? + (By max)? + (Bz max)?.
— Bx max: Signed value of the z-component of the applied field at the point
of maximum applied field magnitude, in mT.

— By max: Signed value of the y-component of the applied field at the point
of maximum applied field magnitude, in mT.

— Bz max: Signed value of the z-component of the applied field at the point
of maximum applied field magnitude, in mT.

Examples: sliding.mif, slidingproc.mif, rotatestage.mif,
rotatecenterstage.mif.

7.3.4 Evolvers

Evolvers are responsible for updating the magnetization configuration from one step to the
next. There are two types of evolvers, time evolvers, which track Landau-Lifshitz-Gilbert dy-
namics, and minimization evolvers, which locate local minima in the energy surface through
direct minimization techniques. Evolvers are controlled by drivers (Sec. 7.3.5), and must
be matched with the appropriate driver type, i.e., time evolvers must be paired with time
drivers, and minimization evolvers must be paired with minimization drivers. The drivers
hand a magnetization configuration to the evolvers with a request to advance the configura-
tion by one step (also called an iteration). It is the role of the drivers, not the evolvers, to
determine when a simulation stage or run is complete. Specify blocks for evolvers contain
parameters to control all aspects of individual stepwise evolution, but stopping criteria are
communicated in the Specify block of the driver, not the evolver.

There are currently three time evolvers and one minimization evolver in the standard
OOMMEF distribution. The time evolvers are 0xs_EulerEvolve, Oxs_RungeKuttaEvolve,
and Oxs_SpinXferEvolve. The minimization evolver is Oxs_CGEvolve.

Oxs_EulerEvolve: Time evolver implementing a simple first order forward Euler method
with step size control on the Landau-Lifshitz ODE [10, 12]:

dM oiLe’
M N B TN (ML), )
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where M is the magnetization, H.g is the effective field, 4 is the Landau-Lifshitz
gyromagnetic ratio, and « is the damping constant. The Gilbert form

dM «Q dM
Clt—_h’MXHeﬁ‘i‘M(Mth)a (3)

where 7 is the Gilbert gyromagnetic ratio, is mathematically equivalent to the Landau-
Lifshitz form under the relation v = (1 + a?) 7.

The Specify block has the form

Specify Oxs_EulerEvolve:name {

alpha «
gamma_LL 7~
gamma G -y
do_precess precess
min_timestep minimum_stepsize
max_timestep mazimum_stepsize
fixed_spins {

atlas_spec

regionl region2 ...
}
start_dm Am
error_rate rate
absolute_step_error abs_error
relative_step_error rel_error
step_headroom headroom

}

All the entries have default values, but the ones most commonly adjusted are listed
first.

The options alpha, gamma_LL and gamma_G are as in the Landau-Lifshitz-Gilbert
ODE (2), (3), where the units on 5 and v are m/A-s and « is dimensionless. At
most one of 4 and v should be specified. If neither is specified, then the default is
v = 2.211 x 10°. (Because of the absolute value convention adopted on 4 and 7 in
(2), (3), the sign given to the value of gamma LL or gamma G in the Specify block is
irrelevant.) The default value for a is 0.5, which is large compared to experimental
values, but allows simulations to converge to equilibria in a reasonable time. However,
for accurate dynamic studies it is important to assign an appropriate value to a.

The do_precess value should be either 1 or 0, and determines whether or not the
precession term in the Landau-Lifshitz ODE (i.e., the first term on the righthand side
in (2)) is used. If precess is 0, then precession is disabled and the simulation evolves
towards equilibrium along a steepest descent path. The default value is 1.
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The min_timestep and max_timestep parameters provide soft limits on the size of
steps taken by the evolver. The minimum value may be overridden by the driver if a
smaller step is needed to meet time based stopping criteria. The maximum value will
be ignored if a step of that size would produce a magnetization state numerically indis-
tinguishable from the preceding state. The units for min_timestep and max_timestep
are seconds. Default values are 0 and 107!° respectively.

The optional fixed_spins entry allows the magnetization in selected regions of the
simulation to be frozen in its initial configuration. The value portion of the entry
should be a list, with the first element of the list being either an inline atlas definition
(grouped as a single item), or else the name of a previously defined atlas. The remainder
of the list are names of regions in that atlas for which the magnetization is to be be
fixed, i.e., M(t) = M(0) for all time ¢ for all points in the named regions. Fields and
energies are computed and reported normally across these regions. Although any atlas
may be used, it is frequently convenient to set up an atlas with special regions defined
expressly for this purpose.

The stepsize for the first candidate iteration in the problem run is selected so that the
maximum change in the normalized (i.e., unit) magnetization m is the value specified
by start_dm. The units are degrees, with default value 0.01.

The four remaining entries, error_rate, absolute_step_error, relative_step_error,
and step_headroom, control fine points of stepsize selection, and are intended for
advance use only. Given normalized magnetization m;(¢) at time ¢ and position 4, and
candidate magnetization m;(t 4+ At) at time t + At, the error at position ¢ is estimated
to be

where the derivative with respect to time, m, is computed using the Landau-Lifshitz
ODE (2). First order methods essentially assume that m is constant on the interval
[t,t + At]; the above formula uses the difference in m at the endpoints of the interval
to estimate (guess) how untrue that assumption is.

A candidate step is accepted if the maximum error across all positions ¢ is smaller
than absolute_step_error, error_rate x At, and relative_step_error X |y, |At,
where |y, | is the maximum value of |m;| across all ¢ at time ¢. If the step is
rejected, then a smaller stepsize is computed that appears to pass the above tests, and
a new candidate step is proposed using that smaller stepsize times step_headroom.
Alternatively, if the step is accepted, then the error information is used to determine
the stepsize for the next step, modified in the same manner by step_headroom.

The error calculated above is in terms of unit magnetizations, so the natural units
are radians or radians/second. Inside the Specify block, however, the error_rate and
absolute_step_error are specified in degrees/nanosecond and degrees, respectively;
they are converted appropriately inside the code before use. The relative _step_error
is a dimensionless quantity, representing a proportion between 0 and 1. The error check
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controlled by each of these three quantities may be disabled by setting the quantity
value to -1. They are all optional, with default values of -1 for error_rate, 0.2 for
absolute_step_error, and 0.2 for relative step_error.

The headroom quantity should lie in the range (0, 1), and controls how conservative the
code will be in stepsize selection. If headroom is too large, then much computation time
will be lost computing candidate steps that fail the error control tests. If headroom
is small, then most candidate steps will pass the error control tests, but computation
time may be wasted calculating more steps than are necessary. The default value for
headroom is 0.85.

In addition to the above error control tests, a candidate step will also be rejected if
the total energy, after adjusting for effects due to any time varying external field, is
found to increase. In this case the next candidate stepsize is set to one half the rejected
stepsize.

The Oxs_EulerEvolve module provides five scalar, one scalar field, and three vector

field outputs. The scalar outputs are

e Max dm/dt: maximum |dm/dt|, in degrees per nanosecond; m is the unit
magnetization direction.

Total energy: in joules.

Delta E: change in energy between last step and current step, in joules.

dE/dt: derivative of energy with respect to time, in joules per second.

e Energy calc count: number of times total energy has been calculated.
The scalar field output is

e Total energy density: cellwise total energy density, in J/m3.
The vector field outputs are

e Total field: total effective field H in A/m.

e mxH: torque in A/m; m is the unit magnetization direction, H is the total
effective field.

e dm/dt: derivative of spin m with respect to time, in radians per second.
Example: octant.mif.

Oxs_RungeKuttaEvolve: Time evolver implementing several Runge-Kutta methods for
integrating the Landau-Lifshitz-Gilbert ODE (2), (3), with step size control. In most
cases it will greatly outperform the Oxs_EulerEvolve class. The Specify block has the
form
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Specify Oxs RungeKuttaEvolve:name {

alpha «
gamma_LL 7~
gamma_G -y
do_precess precess
allow signed gamma signed_gamma
min timestep minimum_stepsize
max_timestep mazimum_stepsize
fixed spins {

atlas_spec

regionl region? ...
}
start dm Am
start_dt start_timestep
stage_start scontinuity
error_rate rate
absolute_step_error abs_error
relative step_error rel_error
energy_precision eprecision
min_step_headroom min_headroom
max_step_headroom max_headroom
reject_goal reject_proportion
method subtype

}

Most of these options appear also in the Oxs_EulerEvolve class. The repeats have the
same meaning as in that class, and the same default values except for relative_step_error
and error_rate, which for Oxs_RungeKuttaEvolve have the default values of 0.01 and
1.0, respectively. Additionally, the alpha, gamma_LL and gamma_G options may

be initialized using scalar field objects, to allow these material parameters to vary
spatially.

The allow_signed _gamma parameter is for simulation testing purposes, and is in-
tended for advanced use only. There is some lack of consistency in the literature with
respect to the sign of 7. For this reason the Landau-Lifshitz-Gilbert equations are
presented above (2, 3) using the absolute value of . This is the interpretation used
if allow_signed gamma is 0 (the default). If instead allow_signed gamma is set to 1,
then the Landau-Lifshitz-Gilbert equations are interpreted without the absolute val-
ues and with a sign change on the v terms, i.e., the default value for v in this case is
—2.211 x 10° (units are m/A-s). In this setting, if 7 is set positive then the spins will
precess backwards about the effective field, and the damping term will force the spins
away from the effective field and increase the total energy. If you are experimenting
with 7 > 0, you should either set o <= 0 to force spins back towards the effective
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field, or disable the energy precision control (discussed below).

The two controls min_step_headroom (default value 0.33) and max_step_headroom
(default value 0.95) replace the single step_headroom option in Oxs_EulerEvolve.
The effective step_headroom is automatically adjusted by the evolver between the
min_headroom and max_headroom limits to make the observed reject proportion ap-
proach the reject_goal (default value 0.05).

The method entry selects a particular Runge-Kutta implementation. It should be
set to one of 7k2, rk4, rkf54, rkf5/m, or rkf54s; the default value is rkf54. The rk2
and rk4 methods implement canonical second and fourth global order Runge-Kutta
methods|[18], respectively. For rk2, stepsize control is managed by comparing 1 at the
middle and final points of the interval, similar to what is done for stepsize control for
the Oxs_EulerEvolve class. One step of the rk2 method involves 2 evaluations of m.

In the rk4 method, two successive steps are taken at half the nominal step size, and
the difference between that end point and that obtained with one full size step are
compared. The error is estimated at 1/15th the maximum difference between these
two states. One step of the rk/ method involves 11 evaluations of m, but the end
result is that of the 2 half-sized steps.

The remaining methods, rkf54, rkf5/m, and rkf54s, are closely related Runge-Kutta-
Fehlberg methods derived by Dormand and Prince[7, 8]. In the nomenclature of these
papers, rkf54 implements RK5(4)7FC, rkf5/m implements RK5(4)7FM, and rkf5/s
implements RK5(4)7FS. All are 5th global order with an embedded 4th order method
for stepsize control. Each step of these methods requires 6 evaluations of m if the step
is accepted, 7 if rejected. The difference between the methods involves tradeoffs be-
tween stability and error minimization. The RK5(4)7FS method has the best stability,
RK5(4)7FM the smallest error, and RK5(4)7FC represents a compromise between the
two. The default method used by Oxs_RungeKuttaEvolve is RK5(4)7FC.

The remaining undiscussed entry in the Oxs_RungeKuttaEvolve Specify block is en-
ergy_precision. This should be set to an estimate of the expected relative accuracy
of the energy calculation. After accounting for any change in the total energy arising
from time-varying applied fields, the energy remainder should decrease from one step
of the LLG ODE to the next. Oxs_RungeKuttaEvolve will reject a step if the energy
remainder is found to increase by more than that allowed by eprecision. The default
value for eprecision is 10719, This control may be disabled by setting eprecision to -1.

The 0xs_RungeKuttaEvolve module provides the same scalar, scalar field, and vector
field outputs as Oxs_EulerEvolve.

Examples: sample.mif, acsample.mif, varalpha.mif, yoyo.mif.

Oxs_SpinXferEvolve: Time evolver that integrates an Landau-Lifshitz-Gilbert ODE aug-
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mented with a spin momentum term [21],

dm

d
— = —|y| m x Heff+a<m>< m) + |v]Be (m x m, x m) — |y|fe m x m, (4)

dt

(compare to (3)), where

m = reduced magnetization, M /M
v = Gilbert gyromagnetic ratio
h| J
P = el 0,
m, = (unit) electron polarization direction
B PA?
T )+ (A2 1)(m-m,)
¢ = secondary spin tranfer term.

In the definition of 3, e is the electron charge in C, J is current density in A/m?, ¢ is
the free layer thickness in meters, and M, is the saturation magnetization in A /m.

The various parameters are defined in the Specify block, which is an extension of that
for the Oxs_RungeKuttaEvolve class:

Specify Oxs_SpinXferEvolve:name {
alpha «
gamma_LL 7~
gamma_G -y
do_precess precess
allow_signed _gamma signed_gamma
min timestep minimum-_stepsize
max_timestep mazimum_stepsize
fixed spins {

atlas_spec
regionl region? ...

}
start.dm Am
stage_start scontinuity
error_rate rate
absolute_step_error abs_error
relative_step_error rel_error
energy_precision eprecision
min_step_headroom min_headroom
max_step_headroom max_headroom
reject_goal reject_proportion
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method subtype

P polarization

P fixed p_fized_layer
P_free p_free_layer
Lambda A

Lambda_fixed A_fized_layer
Lambda_free A_free_layer
eps_prime ep

J current_density
J_profile Jprofile_script

J profile args Jprofile_script_args
mp p_direction
energy_slack eslack

}

The options duplicated in the Oxs_RungeKuttaEvolve class Specify block have the
same meaning and default values here, with the exception of error_rate, which for
Oxs_SpinXferEvolve has the default value of -1 (i.e., disabled).

The default values for P and Lambda are 0.4 and 2, respectively. If preferred, values
for the fixed and free layers may be instead specified separately, through P _fixed,
P_free, Lambda_fixed, and Lambda_free. Otherwise P_fixed = P_free = P and
Lambda_fixed = Lambda_free = Lambda. Lambda must be larger than or equal to 1;
set Lambda=1 to remove the dependence of € on m - m,. If you want non-zero €', it is
set directly as eps_prime.

Current density J and unit polarization direction mp are required. The units on J are
A/m?. Positive J produces torque that tends to align m towards m,,.

Parameters J, mp, P, Lambda, and eps_prime may all be varied pointwise, but are
fixed with respect to time. However, J can be multiplied by a time varying “profile,”
to model current rise times, pulses, etc. Use the J_profile and J_profile_args options
to enable this feature. The Jprofile_script should be a Tecl script that returns a single
scalar. Jprofile_script_args should be a subset of {stage stage time total_time}, to
specify arguments appended to Jprofile_script on each time step. Default is the entire
set, in the order as listed.

The 0xs_SpinXferEvolve module provides the same five scalar outputs and three
vector outputs as Oxs_RungeKutta, plus the scalar output “average J,” and the vector
field outputs “Spin torque” (which is |y|fe (m x m, x m)) and “J*mp.” (Development
note: In the case propagate mp is enabled, mp is actually A,0m/0x, where x is the
flow direction and A, is the cell dimension in that direction.)

The Oxs_SpinXferEvolve class does not include any oersted field arising from the
current. Of course, arbitrary fields simulating the oersted field may be added separately

76



as Zeeman energy terms. An example of this is contained in the spinxfer.mif sample
file.

There are no temperature effects in this evolver, i.e., it is a T = 0 K code.
Note also that m,, is fixed.

For basic usage, the Specify block can be as simple as

Specify Oxs_SpinXferEvolve:evolve {
alpha 0.014
J 7.5el2
mp {1 0 0}
P 0.4
Lambda 2
b

This class is still in early development; at this time the example files are located in
oommf/app/oxs/local instead of oommf/app/oxs/examples.

Examples: spinxfer.mif, spinxfer-miltat.mif, spinxfer-onespin.mif.

Oxs_CGEvolve: The minimization evolver is 0xs_CGEvolve, which is an in-development
conjugate gradient minimizer with no preconditioning. The Specify block has the form

Specify 0xs_CGEvolve:name {
gradient_reset_angle reset_angle
gradient_reset_count count
minimum bracket _step minbrack
maximum bracket _step maxbrack
line minimum angle precision min_prec_angle
line minimum relwidth relwidth
energy_precision eprecision
method cgmethod
fixed spins {

atlas_spec
regionl region? . ..

}

All entries have default values.

The evolution to an energy minimum precedes by a sequence of line minimizations.
Each line represents a one dimensional affine subspace in the 3N dimensional space
of possible magnetization configurations, where N is the number of spins in the simu-
lation. Once a minimum has been found along a line, a new direction is chosen that
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is ideally orthogonal to all preceding directions, but related to the gradient of the en-
ergy taken with respect to the magnetization. In practice the line direction sequence
cannot be extended indefinitely; the parameters gradient reset_angle and gradi-
ent_reset_count control the gradient resetting process. The first checks the angle
between the new direction and the gradient. If that angle is larger than reset_angle
(expressed in degrees), then the selected direction is thrown away, and the conjugate-
gradient process is re-initialized with the gradient direction as the new first direction.
In a similar vein, count specifies the maximum number of line directions selected before
resetting the process. Because the first line in the sequence is selected along the gradi-
ent direction, setting count to 1 effectively turns the algorithm into a steepest descent
minimization method. The default values for reset_angle and count are 80 degrees and
50, respectively.

Once a minimization direction has been selected, the first stage of the line minimization
is to bracket the minimum energy on that line, i.e., given a start point on the line—
the location of the minimum from the previous line minimization—find another point
on the line such that the energy minimum lies between those two points. As one
moves along the line, the spins in the simulation rotate, with one spin rotating faster
than (or at least as fast as) all the others. If the start point was not the result of a
successful line minimization from the previous stage, then the first bracket attempt
step is sized so that the fastest moving spin rotates through the angle specified by
minimum_bracket_step. In the more usual case that the start point is a minimum
from the previous line minimization stage, the initial bracket attempt step size is set
to the distance between the current start point and the start point of the previous line
minimization stage.

The energy and gradient of the energy are examined at the candidate bracket point to
test if an energy minimum lies in the interval. If not, the interval is extended, based
on the size of the first bracket attempt interval and the derivatives of the energy at the
interval endpoints. This process is continued until either a minimum is bracketed or the
fastest moving spin rotates through the angle specified by maximum _bracket_step.

If the bracketing process is successful, then a one dimensional minimization is carried
out in the interval, using both energy and energy derivative information. Each step
in this process reduces the width of the bracketing interval. This process is continued
until the angle between the line direction and the computed energy gradient is within
line_minimum_angle_precision degrees of orthogonal, and the width of the interval
relative to the distance of the interval from the start point (i.e., the stop point from the
previous line minimization process) is less than line_minimum relwidth. The stop
point, i.e., the effective minimum, is taken to be the endpoint of the final interval having
smaller energy. The default value for min_prec_angle is 1 degree, and the default value
for relwidth is 1. This latter setting effectively disables the line minimum relwidth
control, which should generally be used only as a secondary control.

If the bracketing process is unsuccessful, i.e., the check for bracketed energy minimum
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failed at the maximum bracket interval size allowed by maximum bracket_step, then
the maximum bracket endpoint is accepted as the next point in the minimization
iteration.

Once the line minimum stop point has been selected, the next iteration begins with
selection of a new line direction, as described above, except in the case where the stop
point was not obtained as an actual minimum, but rather by virtue of satisfying the
maximum bracket_step constraint. In that case the orthogonal line sequence is reset,
in the same manner as when the gradient reset_angle or gradient_reset_count
controls are triggered, and the next line direction is taken directly from the energy
gradient.

There are several factors to bear in mind when selecting values for the parame-
ters minimum bracket_step, maximum bracket_step, and line minimum relwidth. If
minimum bracket _step is too small, then it may take a great many steps to obtain
an interval large enough to bracket the minimum. If minimum bracket_step is too
large, then the bracket interval will be unnecessarily generous, and many steps may
be required to locate the minimum inside the bracketing interval. However, this value
only comes into play when resetting the line minimization direction sequence, so the
setting is seldom critical. It is specified in degrees, with default value 0.05.

If maximum bracket_step is too small, then the minima will be mostly not bracketed,
and the minimization will degenerate into a type of steepest descent method. On the
other hand, if maximum bracket_step is too large, then the line minimizations may
draw the magnetization far away from a local energy minimum (i.e., one on the full
3N dimensional magnetization space), eventually ending up in a different, more distant
minimum. The value for maximum bracket_step is specified in degrees, with default
value 10.

The line minimum angle precision and line minimum relwidth values determine
the precision of the individual line minimizations, not the total minimization proce-
dure, which is governed by the stopping criteria specified in the driver’s Specify block.
However, these values are important because the precision of the line minimizations
affects the the line direction sequence orthogonality. If both are too coarse, then the
selected line directions will quickly drift away from mutual orthogonality. Conversely,
setting either too fine will produce additional line minimization steps that do noth-
ing to improve convergence towards the energy minimum in the full 3N dimensional
magnetization space.

The energy_precision parameter estimates the relative precision of the energy com-
putations. This is used to introduce a slack factor into the energy comparisons during
the bracketing and line minimization stages, that is, if the computed energy values at
two points have relative error difference smaller than eprecision, they are treated as
having the same energy. The default value for eprecision is 1le-10. The true precision
will depend primarily on the number of spins in the simulation. It may be necessary
for very large simulations to increase the eprecision value.
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The method parameter can be set to either Fletcher-Reeves or Polak-Ribiere to
specify the conjugate gradient direction selection algorithm. The default is Fletcher-
Reeves, which has somewhat smaller memory requirements.

The last parameter, fixed_spins, performs the same function as for the Oxs_EulerEvolve
class.

The 0xs_CGEvolve module provides nine scalar, one scalar field, and two vector field
outputs. The scalar outputs are
e Max mxHxm: maximum |m X H X m|, in A/m; m is the unit magnetization
direction.
e Total energy: in joules.
e Delta E: change in energy between last step and current step, in joules.
e Energy calc count: number of times total energy has been calculated.

e Bracket count: total number of attempts required to bracket energy minimum
during first phase of line minimization procedures.

e Line min count: total number of minimization steps during second phase of line
minimization procedures (i.e., steps after minimum has been bracketed).

e Cycle count: number of line direction selections.

e Cycle sub count: number of line direction selections since the last gradient
direction reset.

e Conjugate cycle count: number of times the conjugate gradient process has
been reset to the gradient direction.

The scalar field output is
e Total energy density: cellwise total energy density, in J/m?.
The vector field outputs are

e H: total effective field in A/m.

e mxHxm: in A/m; m is the unit magnetization direction.

Examples: cgtest.mif, stdprob3.mif, yoyo.mif.

7.3.5 Drivers

While evolvers (Sec. 7.3.4) are responsible for moving the simulation forward in individual
steps, drivers coordinate the action of the evolver on the simulation as a whole, by grouping
steps into tasks, stages and runs.

Tasks are small groups of steps that can be completed without adversely affecting user
interface responsiveness. Stages are larger units specified by the MIF problem description;
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in particular, problem parameters are not expected to change in a discontinuous manner
inside a stage. The run is the complete sequence of stages, from problem start to finish. The
driver detects when stages and runs are finished, using criteria specified in the MIF problem
description, and can enforce constraints, such as making sure stage boundaries respect time
stopping criteria.

There are two drivers in Oxs, Oxs_TimeDriver for controlling time evolvers such as
Oxs_RungeKuttaEvolve, and Oxs_MinDriver for controlling minimization evolvers like 0xs_CGEvolve.

Oxs_TimeDriver: The Oxs time driver is Oxs_TimeDriver. The specify block has the
form

Specify Oxs_TimeDriver:name {
evolver evolver_spec
mesh mesh_spec
Ms scalar_field_spec
m0 wvector_field_spec
stopping-dm_dt torque_criteria
stopping-time time_criteria
stage_iteration_limit stage_iteration_count
total iteration limit total_iteration_count
stage_count number_of stages
stage_count_check tfest
checkpoint_file restart_file_name
checkpoint_interval checkpoint_minutes
checkpoint_disposal cleanup_behavior
start_iteration iteration
start_stage stage
start_stage_iteration stage_iteration
start_stage_start_time stage_time
start_stage_elapsed_time stage_elapsed_time
start_last_timestep timestep
normalize aveM output aveMflag
report_max_spin_angle report_angle
report_wall_time report_time

}

The first four parameters, evolver, mesh, Ms and mO provide references to a time
evolver, a mesh, a scalar field and a vector field, respectively. Here Ms is the pointwise
saturation magnetization in A/m, and m0 is the initial configuration for the magneti-
zation unit spins, i.e., |m| = 1 at each point. These four parameters are required.

The next group of 3 parameters control stage stopping criteria. The stopping_dm_dt
value, in degrees per nanosecond, specifies that a stage should be considered complete
when the maximum |dm/dt| across all spins drops below this value. Similarly, the
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stopping_time value specifies the maximum “Simulation time,” i.e., the Landau-
Lifshitz-Gilbert ODE (2), (3) time, allowed per stage. For example, if time_criteria is
1072, then no stage will evolve for more than 1 ns. If there were a total of 5 stages in the
simulation, then the total simulation time would be not more than 5 ns. The third way
to terminate a stage is with a stage_iteration_limit. This is a limit on the number
of successful evolver steps allowed per stage. A stage is considered complete when any
one of these three criteria are met. Each of the criteria may be either a single value,
which is applied to every stage, or else a grouped list (Sec. 17.3.3.3) of values. If the
simulation has more stages than a criteria list has entries, then the last criteria value is
applied to all additional stages. These stopping criteria all provide a default value of 0,
meaning no constraint, but usually at least one is specified since otherwise there is no
automatic stage termination control. For quasi-static simulations, a stopping dm dt
value in the range of 1.0 to 0.01 is reasonable; the numerical precision of the energy
calculations usually makes in not possible to obtain |dm/dt| much below 0.001 degree
per nanosecond.

The total_iteration_limit, stage_count and stage_count_check parameters involve
simulation run completion conditions. The default value for the first is 0, interpreted
as no limit, but one may limit the total number of steps performed in a simulation
by specifying a positive integer value here. The more usual run completion condition
is based on the stage count. If a positive integer value is specified for stage_count,
then the run will be considered complete when the stage count reaches that value. If
stage_count is not specified, or is given the value 0, then the effective number_of_stages
value is computed by examining the length of the stopping criteria lists, and also any
other Oxs_Ext object that has stage length expectations, such as 0xs_UZeeman. The
longest of these is taken to be the stage limit value. Typically these lengths, along with
stage_count if specified, will all be the same, and any differences indicate an error in
the MIF file. Oxs will automatically test this condition, provided stage_count_check
is set to 1, which is the default value. Stage length requests of 0 or 1 are ignored in
this test, since those lengths are commonly used to represent sequences of arbitrary
length. At times a short sequence is intentionally specified that is meant to be implicitly
extended to match the full simulation stage length. In this case, the stage count check
can be disabled by setting test to 0.

The checkpoint options are used to control the saving of solver state to disk; these saves
are used by the oxsii and boxsi restart feature. The value of the checkpoint_file
option is the name to use for the solver state file. The default is base_file_name.restart.

Cleanup of the checkpoint file is determined by the setting of checkpoint_disposal,
which should be one of standard (the default), done_only, or never. Under the stan-
dard setting, the checkpoint file is automatically deleted upon normal program ter-
mination, either because the solver reached the end of the problem, or because the
user interactively terminated the problem prematurely. If cleanup_behavior is set to
done_only, then the checkpoint file is only deleted if the problem endpoint is reached.
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If cleanup_behavior is never, then OOMMEF does not delete checkpoint file; the user is
responsible for deleting this file as she desires.

The checkpoint_interval value is the time in minutes between overwrites of the
checkpoint file. No checkpoint file is written until checkpoint_minutes have elapsed.
Checkpoint writes occur between solver iterations, so the actual interval time may be
somewhat longer than the specified time. If checkpoint_minutes is 0, then each step is
saved. Setting checkpoint_minutes to -1 disables checkpointing. The default checkpoint
interval is 15 minutes.

The six start_* options control the problem run start point. These are intended
primarily for automatic use by the restart feature. The default value for each is 0.

The normalize_aveM output option is used to control the scaling and units on
the average magnetization components M,, M, and M, sent as DataTable output
(this includes output sent to mmDataTable (Sec. 11), mmGraph (Sec. 12), and
mmArchive (Sec. 14)). If aveMflag is true (1), then the output values are scaled to
lie in the range [—1, 1], where the extreme values are obtained only at saturation (i.e.,
all the spins are aligned). If aveMflag is false (0), then the output is in A/m. The
default setting is 1.

In the older MIF 2.1 format, the driver Specify block supports three additional val-
ues: basename, scalar_output_format, and vector_field_output_format. In the
MIF 2.2 format these output controls have been moved into the SetOptions block.
See the SetOptions (Sec. 17.4.2) documentation for details.

Oxs_TimeDriver provides 12 scalar outputs and 2 vector field outputs. The scalar
outputs are

e Stage: current stage number, counting from 0.

e Stage iteration: number of successful evolver steps in the current stage.

e Iteration: number of successful evolver steps in the current simulation.

e Simulation time: Landau-Lifshitz-Gilbert evolution time, in seconds.

e Last time step: The size of the preceding time step, in seconds.

e Mx/mx: magnetization component in the x direction, averaged across the entire
simulation, in A/m (Mx) or normalized units (mx), depending on the setting of
the normalize_aveM_output option.

e My/my: magnetization component in the y direction, averaged across the entire
simulation, in A/m (My) or normalized units (my), depending on the setting of
the normalize_aveM_output option.

e Mz/mz: magnetization component in the z direction, averaged across the entire
simulation, in A/m (Mz) or normalized units (mz), depending on the setting of
the normalize_aveM_output option.

33



e Max Spin Ang: maximum angle between neighboring spins having non-zero
magnetization M, measured in degrees. The definition of “neighbor” depends on
the mesh, but for 0xs_RectangularMesh the neighborhood of a point consists of
6 points, those nearest forward and backward along each of the 3 coordinate axis
directions.

e Stage Max Spin Ang: the largest value of “Max Spin Ang” obtained across
the current stage, in degrees.

e Run Max Spin Ang: the largest value of “Max Spin Ang” obtained across the
current run, in degrees.

e Wall time: Wall clock time, in seconds.

The three “Max Spin Ang” outputs are disabled by default. In general one should refer
instead to the neighboring spin angle outputs provided by the exchange energies. How-
ever, for backward compatibility, or for simulations without any exchange energy terms,
the driver spin angle outputs can be enabled by setting the report_max_spin_angle
option to to 1.

The “Wall time” output is also disabled by default. It can be enabled by setting the
report_wall_time option to to 1. It reports the wall clock time, in seconds, since a
system-dependent zero-time. This output may be useful for performance comparisions
and debugging. (Note: The timestamp for a magnetization state is recorded when out-
put is first requested for that state; the timestamp is not directly tied to the processing
of the state.)

The vector field outputs are

e Magnetization: magnetization vector M, in A /m.

e Spin: unit magnetization m. This output ignores the vector_ field output_format
precision setting, instead always exporting at full precision.

Examples: sample.mif, pulse.mif.

Oxs_MinDriver: The Oxs driver for controlling minimization evolvers is Oxs_MinDriver.
The specify block has the form

Specify Oxs_MinDriver:name {
evolver evolver_spec
mesh mesh_spec
Ms scalar_field_spec
m0 wvector_field_spec
stopping mxHxm torque_criteria
stage_iteration_limit stage_iteration_count
total_iteration_limit total_iteration_count
stage_count number_of stages
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stage_count_check test
checkpoint_file restart_file_name
checkpoint_interval checkpoint_minutes
checkpoint_disposal cleanup_behavior
start_iteration iferation

start_stage stage
start_stage_iteration stage_iteration
start_stage_start_time stage_time
start_stage_elapsed_time stage_elapsed_time
start_last_timestep timestep
normalize aveM output aveMflag
report_max_spin angle report_angle
report_wall_time repori_time

}

These parameters are the same as those described for the Oxs_TimeDriver class (page 81),
except that stopping_mxHxm replaces stopping dm_dt, and there is no analogue to
stopping time. The value for stopping mxHxm is in A/m, and may be a grouped list
(Sec. 17.3.3.3). Choice depends on the particulars of the simulation, but typical values
are in the range 10 to 0.1. Limits in the numerical precision of the energy calculations
usually makes it not possible to obtain |m x H x m| below about 0.01 A/m. This
control can be disabled by setting it to 0.0.

As with Oxs_TimeDriver, in the older MIF 2.1 format this Specify block supports
three additional values: basename to control output filenames, and output format
controls scalar_output_format and vector_field_output_format. In the MIF 2.2
format these output controls have been moved into the SetOptions block. See the
SetOptions (Sec. 17.4.2) documentation for details.

Oxs_MinDriver provides 10 scalar outputs and 2 vector field outputs. The scalar
outputs are

e Stage: current stage number, counting from 0.

e Stage iteration: number of successful evolver steps in the current stage.

e Iteration: number of successful evolver steps in the current simulation.

e Mx/mx: magnetization component in the x direction, averaged across the entire
simulation, in A/m (Mx) or normalized units (mx), depending on the setting of
the normalize_aveM_output option.

e My/my: magnetization component in the y direction, averaged across the entire
simulation, in A/m (My) or normalized units (my), depending on the setting of
the normalize _aveM output option.

e Mz/mz: magnetization component in the z direction, averaged across the entire
simulation, in A/m (Mz) or normalized units (mz), depending on the setting of
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the normalize_aveM_output option.

e Max Spin Ang: maximum angle between neighboring spins having non-zero
magnetization M, measured in degrees. The definition of “neighbor” depends on
the mesh, but for Oxs_RectangularMesh the neighborhood of a point consists of
6 points, those nearest forward and backward along each of the 3 coordinate axis
directions.

e Stage Max Spin Ang: the largest value of “Max Spin Ang” obtained across
the current stage, in degrees.

e Run Max Spin Ang: the largest value of “Max Spin Ang” obtained across the
current run, in degrees.

e Wall time: Wall clock time, in seconds.

As is the case for the Oxs_TimeDriver, the three “Max Spin Ang” outputs and “Wall
time” are disabled by default. They angle outputs are enabled by setting the re-
port_max_spin_angle option to to 1, and the wall time output is enabled by setting
the report_wall time option to to 1.

The vector field outputs are

e Magnetization: magnetization vector M, in A /m.

e Spin: unit magnetization m. This output ignores the vector_field output_format
precision setting, instead always exporting at full precision.

Examples: cgtest.mif, stdprob3.mif.

7.3.6 Field Objects

Field objects return values (either scalar or vector) as a function of position. These are
frequently used as embedded objects inside Specify blocks of other Oxs_Ext objects to ini-
tialize spatially varying quantities, such as material parameters or initial magnetization spin
configurations. Units on the returned values will be dependent upon the context in which
they are used.

Scalar field objects are documented first. Vector field objects are considered farther
below.

Oxs_UniformScalarField: Returns the same constant value regardless of the import po-
sition. The Specify block takes one parameter, value, which is the returned constant
value. This class is frequently embedded inline to specify homogeneous material pa-
rameters. For example, inside a driver Specify block we may have

Specify Oxs_TimeDriver {

Ms { Oxs_UniformScalarField {
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value 8eb

+}

3

As discussed in the MIF 2 documentation (Sec. 17.3.3.2, page 206), when embedding
Oxs_UniformScalarField or Oxs_UniformVectorField objects, a notational short-
hand is allowed that lists only the value. The previous example is exactly equivalent
to

Specify Oxs_TimeDriver {
Ms 8eb
}

where an implicit Oxs_UniformScalarField object is created with value set to 8eb.

Examples: sample.mif, cgtest.mif.

Oxs_AtlasScalarField: Declares values that are defined across individual regions of an
Oxs_Atlas. The Specify block looks like

Specify Oxs_AtlasScalarField:walue {
atlas atlas_spec
multiplier mult
default_value scalar_field_spec
values {
regionl_label scalar_field_specl
region2_label scalar_field_spec?

}

The specified atlas is used to map cell locations to regions; the value at the cell location
of the scalar field from the corresponding values sub-block is assigned to that cell. The
default_value entry is optional; if specified, and if a cell’s region is not included in
the values sub-block, then the default_value scalar field is used. If default_value
is not specified, then missing regions will raise an error.

The scalar field entries may specify any of the scalar field types described in this
(Field Objects) section. As usual, one may provide a single numeric value in any
of the scalar field spec positions; this will be interpreted as requesting a uniform
(spatially homogeneous) field with the indicated value.

If the optional multiplier value is provided, then each field value is scaled (multiplied)
by the value mult.
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The vector field analogue to this class is Oxs_AtlasVectorField, which is described
below in the vector fields portion of this section.

Examples: diskarray.mif, ellipsoid.mif, grill.mif, spinvalve.mif, tclshapes.mif.

Oxs_LinearScalarField: Returns a value that varies linearly with position. The Specify
block has the form:

Specify Oxs_LinearScalarField:name {
norm value
vector { v, v, v, }
offset off

}

If optional value norm is specified, then the given vector is first scaled to the requested
size. The offset entry is optional, with default value 0. For any given point (x,y, 2),
the scalar value returned by this object will be xv, + yv, + zv, +of f.

Example: spinvalve-af.mif.

Oxs_RandomScalarField: Defines a scalar field that varies spatially in a random fashion.
The Specify block has the form:

Specify Oxs_RandomScalarField:name {
range min minvalue
range max mazvalue
cache_grid mesh_spec

}

The value at each position is drawn uniformly from the range declared by the two re-
quired parameters, range_min and range_max. There is also an optional parameter,
cache_grid, which takes a mesh specification that describes the grid used for spatial
discretization. If cache_grid is not specified, then each call to Oxs_RandomScalarField
generates a different field. If you want to use the same random scalar field in two places
(as a base for setting, say anisotropy coefficients and saturation magnetization), then
specify cache_grid with the appropriate (usually the base problem) mesh.

Examples: randomshape.mif, stdprobl.mif.

Oxs_ScriptScalarField: Analogous to the parallel 0xs_ScriptVectorField class, this class

produces a scalar field dependent on a Tcl script and optionally other scalar and vector
fields. The Specify block has the form

Specify Oxs_ScriptScalarField:name {
script Tel_script
script_args { args_request }
scalar _fields { scalar_field_spec ...}

38



vector_fields { wector_field_spec ...}
atlas atlas_spec

xrange { zmin xmax }

yrange { ymin ymazx }

zrange { zmin zmax }

}

For each point of interest, the specified script is called with the arguments requested
by script_args appended to the command, as explained in the User Defined Support
Procedures section (Sec. 17.3.3.6) of the MIF 2 file format documentation. The value
for script_args should be a subset of {rawpt relpt minpt maxpt span scalars
vectors}.

If rawpt is requested, then when the Tcl proc is called, at the corresponding spot in
the argument list the x, y, z values of point will be placed, in problem coordinates
(in meters). The points so passed will usually be node points in the simulation dis-
cretization (the mesh), but this does not have to be the case in general. The relpt,
minpt, maxpt, and span rely on a definition of a bounding box, which is an axes parallel
parallelepiped. The bounding box must be specified by either referencing an atlas, or
by explicitly stating the range via the three entries xrange, yrange, zrange (in me-
ters). The minpt and maxpt arguments list the minimum and maximum values of the
bounding box (coordinate by coordinate), while span provides the 3-vector resulting
from (maxpt — minpt). The relpt selection provides x rel, y rel, z rel, where each
element lies in the range [0, 1], indicating a relative position between minpt and maxpt,
coordinate-wise.

Each of the script_args discussed so far places exactly 3 arguments onto the Tcl proc
argument list. The last two, scalars and vectors, place arguments depending on the
size of the scalar_fields and vector_fields lists. The scalar_fields value is a list
of other scalar field objects. Each scalar field is evaluated at the point in question,
and the resulting scalar value is placed on the Tcl proc argument list, in order. The
vector_fields option works similarly, except each vector field generates three points
for the Tcl proc argument list, since the output from vector field objects is a three
vector. Although the use of these entries appears complicated, this is a quite powerful
facility that allows nearly unlimited control for the modification and combination of
other field objects. Both scalar fields and vector_fields entries are optional.

If script_args is not specified, the default value relpt is used.

Note that if script_args includes relpt, minpt, maxpt, or span, then a bounding box
must be specified, as discussed above. The following example uses the explicit range
method. See the Oxs_ScriptVectorField documentation (page 97) for an example
using an atlas specification.

proc Ellipsoid { xrel yrel zrel } {
set xrad [expr {$xrel - 0.5}]
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set yrad [expr {$yrel - 0.5}]

set zrad [expr {$zrel - 0.5}]

set test [expr {$xrad*$xrad+$yrad*$yrad+$zrad*$zrad}]
if {$test>0.25} {return O}

return 8.6eb5

Specify Oxs_ScriptScalarField {
script Ellipsoid
xrange { 0 le-6 }
yrange { 0 250e-9 }
zrange { 0 50e-9 }
}

This Oxs_ScriptScalarField object returns 8.6 x 10° if the import (x,y,z) lies within
the ellipsoid inscribed inside the axes parallel parallelepiped defined by (xmin=0,
ymin=0, zmin=0) and (xmax=1e-6, ymax=250e-9, zmax=>50e-9), and 0 otherwise.
See also the discussion of the ReadFile MIF extension command in Sec. 17.3.2 for an
example using an imported image file for similar purposes.

Below is one more example, illustrating the use of the vector_fields option.

proc DotProduct { x1 y1 z1 x2 y2 z2 } {
return [expr {$x1*$x2+$yl1*$y2+$z1x$z2}]
}

Specify Oxs_FileVectorField:filel {
atlas :atlas
file filel.omf

Specify Oxs_UniformVectorField:dir111l {
norm 1
vector {1 1 1}

Specify Oxs_ScriptScalarField:project {
script DotProduct
script_args vectors
vector_fields {:filel :diri111}

+

The scalar field :project yields at each point in space the projection of the vector
field :filel onto the [1,1,1] direction.
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Examples: antidots-filled.mif, ellipsoid-fieldproc.mif, manyregions-scriptfields.mif,
manyspheres.mif, varalpha.mif.

Oxs_VecMagScalarField: The Oxs VecMagScalarField class produces a scalar field from
a vector field by taking the norm of the vector field on a point-by-point basis, i.e.,

The Specify block has the form:

Specify Oxs_VecMagScalarField:name {
field wector_field_spec
multiplier mult
offset off

}

The multiplier and offset entries are applied after the vector norm, i.e., the resulting
scalar field is mult * ||v|| + off. The default values for mult and off are 1 and 0,
respectively.

The functionality of the Oxs_VecMagScalarField class may be achieved with the
Oxs_ScriptScalarField class by using the vector_fields option and a Tcl script to
compute the vector norm. However, this particular functionality is needed frequently
enough that a specialized class is useful. For example, this class can be used in conjunc-
tion with a vector field object to set both the saturation magnetization distribution
(M) and the initial magnetization:

Specify Oxs_FileVectorField:filel {
atlas :atlas
file filel.omf

Specify Oxs_TimeDriver {
basename test
evolver :evolve
stopping_dm_dt 0.01
mesh :mesh
m0 :filel
Ms { Oxs_VecMagScalarField {
field :filel
1}
}

Example: sample-vecrotate.mif.
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Oxs_ScriptOrientScalarField: Scalar fields provide scalar values as a function of position
across three-space. The Oxs_ScriptOrientScalarField class is used to compose a
transformation on the input position before evaluation by a scalar field. The Specify
block has the form:

Specify Oxs_ScriptOrientScalarField:name {
field scalar_field_spec
script Tel_script
script_args { args_request }
atlas atlas_spec
xrange { zmin xmax }
yrange { ymin ymazx }
zrange { zmin zmax }

}

The field argument should refer to a scalar field object. The script is a Tcl script
that should return a position vector that will be sent on the field object to ulti-
mately produce a scalar value. The arguments to the Tcl _script are determined by
script_args, which should be a subset of {relpt rawpt minpt maxpt span}. If any
arguments other than rawpt are requested, then the bounding box must be specified
by either the atlas option, or else through the three xrange, yrange, zrange entries.
The default value for script_args is relpt.

The O0xs_ScriptOrientScalarField class can be used to change the “orientation” of
a scalar field, as in the following simple example, which reflects the :filelmag scalar
field across the yz-plane:

Specify Oxs_FileVectorField:filel {
atlas :atlas
file filel.omf

Specify Oxs_VecMagScalarField:filelmag {
field :filel
}

proc Reflect { x y z xmin ymin zmin xmax ymax zmax} {
return [list [expr {($xmax+$xmin-$x)}] $y $zl]
}

Specify Oxs_ScriptOrientScalarField:reflect {
field :filelmag
script Reflect
script_args {rawpt minpt maxpt}
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atlas :atlas

}

See also the Oxs_ScriptOrientVectorField class (page 100) for analogous operations
on vector fields.

Example: sample-reflect.mif.

Oxs_AffineOrientScalarField: The Oxs _AffineOrientScalarField class is similar to the
Oxs_ScriptOrientScalarField class, except that the transformation on the import
position is by an affine transformation defined in terms of a 3 x 3 matrix and an offset
instead of a Tcl script. Although this functionality can be obtained by an appropriate
Tecl script, the Oxs_AffineOrientScalarField is easier to use and will run faster, as
the underlying transformation is performed by compiled C++ instead of Tcl script.

The Specify block has the form:

Specify Oxs_AffineOrientScalarField:name {
field scalar_field_spec
M { matriz_entries ...}
offset { off, offy off. }
inverse invert_flag
inverse_slack slack

}

If F'(x) represents the scalar field specified by the field value, then the resulting trans-
formed scalar field is F/(Max + off). Here M is a 3 x 3 matrix, which may be specified
by a list of 1, 3, 6 or 9 entries. If the matrix entries list consists of a single value,
then M is taken to be that value times the identity matrix, i.e., M is a homogeneous
scaling transformation. If matrix entries consists of 3 values, then M is taken to be
the diagonal matrix with those three values along the diagonal. If matrix entries is
6 elements long, then M is assumed to be a symmetric matrix, where the 6 elements
specified correspond to Myy, Mis, M3, Moy, Mas, and Msz. Finally, if matrix_entries
is 9 elements long, then the elements specify the entire matrix, in the order My, Mo,
Mg, Moy, ..., Msz. If M is not specified, then it is taken to be the identity matrix.

The offset entry is simply a 3-vector that is added to M. If offset is not specified,
then it is set to the zero vector.

It is frequently the case that the transformation that one wants to apply is not M ax+off,
but rather the inverse, i.e., M~'(x — off). Provided M is nonsingular, this can be
accomplished by setting the inverse option to 1. In this case the matrix M. M~ is
compared to the identity matrix, to check the accuracy of the matrix inversion. If
any entry in M.M~! differs from I by more than the 8-byte float machine precision
(typically 2 x 1071%) times the value of inverse_slack, then an error is raised. The
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default setting for invert flag is 0, meaning don’t invert, and the default setting for
slack is 128.

Here is an example using Oxs_AffineOrientScalarField to rotate a field by 90° coun-
terclockwise about the z-axis. Note that the specified atlas is square in x and y, with
the origin of the atlas coordinates in the center of the atlas volume.

Specify Oxs_BoxAtlas:atlas {
xrange {-250e-9 250e-9}
yrange {-250e-9 250e-9}
zrange { -15e-9 15e-9}

}

Specify Oxs_FileVectorField:filel {
atlas :atlas
file filel.omf

Specify Oxs_VecMagScalarField:filelmag {
field :filel
}

Specify Oxs_AffineOrientScalarField:reflect {
field :filelmag
M{010
-100
001}
}

See also the Oxs_AffineOrientVectorField class (page 101) for analogous operations
on vector fields.

Example: sample-rotate.mif.

Oxs_AffineTransformScalarField: Like the Oxs_AffineOrientScalarField class, this
class composes an affine transform with a separate scalar field, but in this case the
affine transform is applied after the field evaluation. The Specify block has the form:

Specify Oxs_AffineTransformScalarField:name {
field scalar_field_spec
multiplier mult
offset off
inverse invert_flag
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If F(x) represents the scalar field specified by the field value, then the resulting scalar
field is mult * F'(x) + off. Since the output from F is a scalar, both multiplier and
offset are scalars. If inverse is 1, then the transform is changed to (F'(x) — off) /mult,
provided mult is non-zero.

The default values for mult, off, and invert_flag are 1, 0, and 0, respectively. The field
value is the only required entry.

The functionality provided by Oxs_AffineTransformScalarField can also be pro-
duced by the Oxs_ScriptScalarField class (page 88) with the scalar_fields entry,
but the Oxs_AffineTransformScalarField class is faster and has a simpler interface.
See also the Oxs_AffineTransformVectorField class (page 101) for analogous opera-
tions on vector fields.

Example: sample-rotate.mif.

Oxs_ImageScalarField: This class creates a scalar field using an image. The Specify block
has the form

Specify Oxs_ImageScalarField:name {
image pic
invert invert_flag
multiplier mult
offset off
viewplane wiew
atlas atlas_spec
xrange { zmin xmax }
yrange { ymin ymazx }
zrange { zmin zmax }
exterior ext_flag

}

The image is interpreted as a monochromatic map, yielding a scalar field with black
corresponding to zero and white to one if invert is 0 (the default), or with black
corresponding to 1 and white to 0 if invert is 1. Color images are converted to
grayscale by simply summing the red, green, and blue components. A multiplier
option is available to change the range of values from [0, 1] to [0, mult], after which the
offset value, if any, is added.

The viewplane is treated in the same manner as the viewplane option in the Oxs_ImageAtlas
class, and should likewise take one of the three two-letter codes xy (default), zx or
yz. The spatial scale is adjusted to fit the volume specified by either the atlas or
xrange/yrange/zrange selections. If the specified volume does not fill the entire
simulation volume, then points outside the specified volume are handled as deter-
mined by the exterior setting, which should be either a floating point value, or one of
the keywords boundary or error. In the first case, the floating point value is treated
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as a default value for points outside the image, and should have a value in the range
[0,1]. The multiplier and offset adjustments are made to this value in the same way
as to points inside the image. If ezt flag is boundary, then points outside the image
are filled with the value of the closest point on the boundary of the image. If ext is
error (the default), then an error is raised if a value is needed for any point outside
the image.

Examples: rotatecenterstage.mif, sample-reflect.mif.
The available vector field objects are:

Oxs_UniformVectorField: Returns the same constant value regardless of the import posi-
tion. The Specify block takes one required parameter, vector, which is a 3-element list
of the vector to return, and one optional parameter, norm, which if specified adjusts
the size of export vector to the specified magnitude. For example,

Specify Oxs_UniformVectorField {
norm 1
vector {1 1 1}

}

This object returns the unit vector (a,a,a), where a = 1/ V3, regardless of the import
position.

This class is frequently embedded inline to specify spatially uniform quantities. For
example, inside a driver Specify block we may have

Specify Oxs_TimeDriver {

m0 { Oxs_UniformVectorField {
vector {1 0 0}
i3

by

As discussed in the MIF 2 documentation (Sec. 17.3.3.2, page 206), when embedding
Oxs_UniformVectorField or Oxs_UniformScalarField objects, a notational short-
hand is allowed that lists only the required value. The previous example is exactly
equivalent to

Specify Oxs_TimeDriver {

m0 {1 0 0}
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where an implicit Oxs_UniformVectorField object is created with the value of vector
set to {1 0 0}.

Examples: sample.mif, cgtest.mif.

Oxs_AtlasVectorField: Declares vector values that are defined across individual regions
of an Oxs_Atlas. The Specify block has the form

Specify Oxs_AtlasVectorField:name {
atlas atlas_spec
norm maguval
multiplier mult
default_value wvector_field_spec
values {
regionl_label vector_field_specl
region2_label vector_field_spec?2

}

Interpretation is analogous to the Oxs_AtlasScalarField specify block, except here
the output values are 3 dimensional vectors rather than scalars. Thus the values
associated with each region are vector fields rather than scalar fields. Any of the
vector field types described in this (Field Objects) section may be used. As usual,
one may provided a braced list of three numeric values to request a uniform (spatially
homogeneous) vector field with the indicated value.

The optional norm parameter causes each vector value to be scaled to have magnitude
magval. The optional multiplier value scales the field values. If both norm and
multiplier are specified, then the field vectors are first normalized before being scaled
by the multiplier value.

Examples: diskarray.mif, exchspring.mif, imageatlas.mif, spinvalve.mif.

Oxs_ScriptVectorField: Conceptually similar to the Oxs_ScriptScalarField scalar field
object (page 88), except that the script should return a vector (as a 3 element list)
rather than a scalar. In addition to the parameters accepted by Oxs_ScriptScalarField,
Oxs_ScriptVectorField also accepts an optional parameter norm. If specified, the
return values from the script are size adjusted to the specified magnitude. If both norm
and multiplier are specified, then the field vectors are first normalized before being
scaled by the multiplier value.

The following example produces a vortex-like unit vector field, with an interior core
region pointing parallel to the z-axis. Here the scaling region is specified using an
atlas reference to an object named “:atlas”, which is presumed to be defined earlier
in the MIF file. See the Oxs_ScriptScalarField sample Specify block for an example
using the explicit range option.
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proc Vortex { xrel yrel zrel } {
set xrad [expr {$xrel-0.5}]
set yrad [expr {$yrel-0.5}]
set normsq [expr {$xrad*$xrad+$yrad*$yradl]
if {$normsq <= 0.025} {return "0 O 1"}
return [list [expr {-1x$yrad}] $xrad 0]

Specify Oxs_ScriptVectorField {
script Vortex
norm 1
atlas :atlas

}

See also the 0xs_MaskVectorField documentation and the discussion of the ReadFile
MIF extension command in Sec. 17.3.2 for other example uses of the Oxs_ScriptVectorField
class.

Examples: cgtest.mif ellipsoid.mif, manyregions-scriptfields.mif, sample-vecreflect.n
stdprob3.mif, yoyo.mif.

Oxs_FileVectorField: Provides a file-specified vector field. The Specify block has the form

Specify Oxs_FileVectorField:name {
file filename
atlas atlas_spec
xrange { zmin zmazx }
yrange { ymin ymazx }
zrange { zmin zmax }
spatial_scaling { zscale yscale zscale }
spatial offset { zoff yoff zoff }
exterior ext_flag
norm magnitude
multiplier mult

}

Required values in the Specify block are the name of the input vector field file and
the desired scaling parameters. The filename is specified via the file entry, which
names a file containing a vector field in one of the formats recognized by avf2ovf
(Sec. 16.3). If atlas or xrange/yrange/zrange are specified, then the file will be
scaled and translated as necessary to fit that scaling region, in the same manner as done,
for example, by the Oxs_ScriptScalarField and Oxs_ScriptVectorField classes.
Alternatively, one may specify spatial_scaling and spatial offset directly. In this
case the vector spatial positions are taken as specified in the file, multiplied component-
wise by (xscale,yscale,zscale), and then translated by (xoff,yoff,zoff). If you
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want to use the spatial coordinates as directly specified in the file, use (1,1,1) for
spatial_scaling and (0,0,0) for spatial_offset.

In all cases, once the input field has been scaled and translated, it is then sub-sampled
(zeroth-order fit) as necessary to match the simulation mesh.

The exterior flag determines the behavior at “exterior points”, i.e., locations (if any)
in the simulation mesh that lie outside the extent of the scaled and translated vector
field. The ezt_flag should be either a three-vector, or one of the keywords boundary
or error. If a three-vector is given, then that value is supplied at all exterior points.
If ext_flag is set to boundary, then the value used is the point on the boundary of the
input vector field that is closest to the exterior point. The default setting for ext_flag
is error, which raises an error if there are any exterior points.

The magnitude of the field can be modified by the optional norm and multiplier
attributes. If the norm parameter is given, then each vector in the field will be renor-
malized to the specified magnitude. If the multiplier parameter is given, then each
vector in the field will be multiplied by the given scalar value. If the multiplier value is
negative, the field direction will be reversed. If both norm and multiplier are given,
then the field vectors are renormalized before being scaled by the multiplier value.

Examples: stdprob3.mif, yoyo.mif.

Oxs_RandomVectorField: Similar to Oxs_RandomScalarField (q.v.), but defines a vector
field rather than a scalar field that varies spatially in a random fashion. The Specify
block has the form:

Specify Oxs_RandomVectorField:name {
min norm minvalue
max_norm maxvalue
cache_grid mesh_spec

}

The Specify block takes two required parameters, min_norm and max norm. The
vectors produced will have magnitude between these two specified values. If min norm
= max_norm, then the samples are uniformly distributed on the sphere of that ra-
dius. Otherwise, the samples are uniformly distributed in the hollow spherical vol-
ume with inner radius min norm and outer radius max_norm. There is also an op-
tional parameter, cache_grid, which takes a mesh specification that describes the grid
used for cache spatial discretization. If cache_grid is not specified, then each call
to Oxs_RandomVectorField generates a different field. If you want to use the same
random vector field in two places (as a base for setting, say anisotropy axes and ini-
tial magnetization), then specify cache_grid with the appropriate (usually the base
problem) mesh.

Examples: diskarray.mif, sample2.mif, randomshape.mif stdprobl.mif.
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Oxs_PlaneRandomVectorField: Similar to Oxs RandomVectorField, except that sam-
ples are drawn from 2D planes rather than 3-space. The Specify block has the form

Specify Oxs RandomVectorField:name {
plane normal wvector_field_spec
min norm minvalue
max_norm mazvalue
cache_grid mesh_spec

}

The min_norm, max norm, and cache_grid parameters have the same meaning
as for the Oxs_RandomVectorField class. The additional parameter, plane_normal,
specifies a vector field that at each point provides a vector that is orthogonal to the
plane from which the random vector at that point is to be drawn. If the vector field is
specified explicitly as three real values, then a spatially uniform vector field is produced
and all the random vectors will lie in the same plane. More generally, however, the
normal vectors (and associated planes) may vary from point to point. As a special
case, if a normal vector at a point is the zero vector, then no planar restriction is made
and the resulting random vector is drawn uniformly from a hollow ball in three space
satisfying the minimum/maximum norm constraints.

Example: sample2.mif.

Oxs_ScriptOrientVectorField: This class is analogous to the Oxs_ScriptOrientScalarField
class (page 92). The Specify block has the form:

Specify Oxs_ScriptOrientVectorField:name {
field wector_field_spec
script Tel_script
script_args { args_request }
atlas atlas_spec
xrange { zmin xmax }
yrange { ymin ymaz }
zrange { zmin zmax }

}

The interpretation of the specify block and the operation of the Tcl script is exactly
the same as for the Oxs_ScriptOrientScalarField class, except the input field and
the resulting field are vector fields instead of scalar fields.

Note that the “orientation” transformation is applied to the import spatial coordinates
only, not the output vector. For example, if the field value represents a shaped vector
field, and the script proc is a rotation transformation, then the resulting vector
field shape will be rotated as compared to the original vector field, but the output
vectors themselves will still point in their original directions. In such cases one may
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wish to compose the Oxs_ScriptOrientVectorField with a Oxs_ScriptVectorField
object (page 97) to rotate the output vectors as well. This situation occurs also with
the Oxs_AffineOrientVectorField class. See the Oxs_AffineTransformVectorField
class documentation (page 101) for an example illustrating the composition of an object
of that class with a Oxs_AffineOrientVectorField object.

Example: sample-vecreflect.mif.

Oxs_AffineOrient VectorField: This class is analogous to the Oxs_AffineOrientScalarField
class (page 93). The Specify block has the form:

Specify Oxs_AffineOrientVectorField:name {
field wector_field_spec
M { matriz_entries ...}
offset { off, off, off. }
inverse invert_flag
inverse_slack slack

}

The interpretation of the specify block and the affine transformation is exactly the
same as for the Oxs_AffineOrientScalarField class, except the input field and the
resulting field are vector fields instead of scalar fields.

As explained in the Oxs_ScriptOrientVectorField documentation, the “orientation”
transformation is applied to the import spatial coordinates only, not the output vector.
If one wishes to rotate the output vectors, then a Oxs_AffineTransformVectorField
object may be applied with the opposite rotation. See that section for an example.

Examples: yoyo.mif, sample-vecrotate.mif.

Oxs_AffineTransformVectorField: This class applies an affine transform to the output of
a vector field. It is similar to the Oxs_AffineTransformScalarField class (page 94),
except that in this case the affine transform is applied to a vector instead of a scalar.
The Specify block has the form:

Specify Oxs AffineTransformVectorField:name {
field wector_field_spec
M { matriz_entries ...}
offset { off, off, off. }
inverse invert_flag
inverse_slack slack

}

Because the output from field is a 3-vector, the transform defined by M and offset
requires M to be a 3 x 3 matrix and offset to be a 3-vector. Thus, if v(x) represents the
vector field specified by the field value, then the resulting vector field is M.v(x) + off.
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M is described by a list of from one to nine entries, in exactly the same manner as
for the Oxs_AffineOrientVectorField and Oxs_AffineOrientScalarField classes
(page 94). The interpretation of offset, inverse, and inverse_slack is also the same.
In particular, if invert_flag is 1, then the resulting vector field is M 1. (v(x) — off).

The following example illustrates combining a Oxs_AffineTransformVectorField with
a Oxs_AffineOrientVectorField to completely rotate a vector field.

Specify Oxs_BoxAtlas:atlas {
xrange {-80e-9 80e-9}
yrange {-80e-9 80e-9}
zrange {0 40e-9%}

}

proc Trap { x y z } {
if {$y<=$x && $y<=0.5} {return [list 0 1 0]}
return [list O O 0]

Specify Oxs_ScriptVectorField:trap {
script Trap
atlas :atlas

Specify Oxs_AffineOrientVectorField:orient {
field :trap
Mm{o0o-10
1 00
0 011}
offset { -20e-9 0 0 }
inverse 1

Specify Oxs_AffineTransformVectorField:rot {
field :orient

M{0-10
1 00
0 01}

proc Threshold { vx vy vz } {
set magsq [expr {$vx*$vx+$vy*$vy+$vz*$vzl]
if {$magsq>0} {return 8eb}
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return 0.0

}

Specify Oxs_ScriptScalarField:Ms {
vector_fields :rot
script Threshold
script_args vectors

}

Specify Oxs_TimeDriver {
m0 :rot

Ms :Ms

stopping_dm_dt 0.01
evolver :evolve
mesh :mesh

3

The base field here is given by the Oxs_ScriptVectorField:trap object, which pro-
duces a vector field having a trapezoidal shape with the non-zero vectors pointing paral-
lel to the y-axis. The :orient and :rot transformations rotate the shape and the vec-
tors counterclockwise 90°. Additionally, the offset option in :orient translates the
shape 20 nm towards the left. The original and transformed fields are illustrated below.

o i i i
- i
- i
o i i i
- i
- i
o i i i
- e e e e e e e

PAREAL ALY MDIDEMMINRNN
PAAEA L AN LS DEREDERERER N
TERVRERUREE MDIDIDND
PALAL AL AL AL A Y MDIRN
PAARAAL AL L ALY MDD
PAEAAAA AL AL LY e
EERSSURRRNVEREY! P
Original field Rotated field

Example: sample-vecrotate.mif.

Oxs_MaskVectorField: Multiplies a vector field pointwise by a scalar vector field (the
mask) to produce a new vector field. The Specify block has the form:

Specify Oxs_MaskVectorField:name {
mask scalar_field_spec
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field wector_field_spec

}

This functionality can be achieved, if in a somewhat more complicated fashion, with
the Oxs_ScriptVectorField class. For example, given a scalar field :mask and a vector
field :vfield, this example using the Oxs_MaskVectorField class

Specify Oxs_MaskVectorField {
mask :mask
field :vfield

b

is equivalent to this example using the Oxs_ScriptVectorField class

proc MaskField { m vx vy vz } {
return [list [expr {$m*$vx}] [expr {$m*$vy}] [expr {$m*$vz}]]
}

Specify Oxs_ScriptVectorField {
script MaskField
script_args {scalars vectors}
scalar_fields { :mask }
vector_fields { :vfield }

b

Of course, the Oxs_ScriptVectorField approach is easily generalized to much more
complicated and arbitrary combinations of scalar and vector fields.

Example: rotatecenterstage.mif.

Oxs_ImageVectorField: This class creates a vector field using an image. The Specify
block has the form

Specify Oxs_ImageVectorField:name {
image pic
multiplier mult
vxmultiplier zmult
vy multiplier ymult
vz multiplier zmult
vx_offset zoff
vy_offset yoff
vz_offset zoff
norm norm-magnitude
viewplane view
atlas atlas_spec
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xrange { zmin zmazx }
yrange { ymin ymazx }
zrange { zmin zmax }
exterior ext_flag

}

The image is interpreted as a three-color map, yielding a vector field where each (x,y,z)
component is determined by the red, green, and blue color components, respectively.. . .

The viewplane, atlas, xrange/yrange/zrange, and exterior are treated the same
as for the Oxs_ImageScalarField class (q.v.)

Examples: NONE.

7.3.7 MIF Support Classes

Oxs_LabelValue: A convenience object that holds label + value pairs. 0Oxs_LabelValue
objects may be referenced via the standard attributes field in other Specify blocks,
as in this example:

Specify Oxs_LabelValue:probdata {
alpha 0.5
start_dm 0.01

b

Specify Oxs_EulerEvolve {
attributes :probdata
b

The Specify block string for Oxs_LabelValue objects is an arbitrary Tcl list with an
even number of elements. The first element in each pair is interpreted as a label, the
second as the value. The attribute option causes this list to be dropped verbatim
into the surrounding object. This technique is most useful if the label + value pairs in
the Oxs_LabelValue object are used in multiple Specify blocks, either inside the same
MIF file, or across several MIF files into which the Oxs_LabelValue block is imported
using the ReadFile MIF extension command.

Examples: The MIF files sample-rotate.mif and sample-reflect.mif use the
Oxs_LabelValue object stored in the sample-attributes.tcl file.

Refer to Sec. 17.3 for details on the base MIF 2 format specification.
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8 Micromagnetic Problem Editor: mmProbEd

Bl <8> mmProbEd | = || @ | 22 |

File Options Help

SR T TR EF <8> mmProbEd: Material Parameters E\@

Simulation Details

Replace | Delete

Material Types ‘ Add

Part Geometry

Material Name:

Ms (A/m): 800e3
Experiment Parameters A (Jfm):13e-12
K1 (J/m~3):|0.5E3
Damp Coef: 0.5

Initial Mag

Output Specifications

Miscellaneous Anisotropy Type: & Uniaxial ¢ Cubic

Anisotropy Initt ¢ Constant ¢ Uniform XY ¢ Uniform 52

Dirl =1 y:|0 z0

Dir2 x|0 y:[1 z0
Ok Cancel

Mext Previous

Overview

The application mmProbEd provides a user interface for creating and editing micromag-
netic problem descriptions in the MIF 1.1 (Sec. 17.1, page 187) and MIF 1.2 (Sec. 17.2)
formats. mmProbEd also acts as a server, supplying problem descriptions to running
mmSolve2D micromagnetic solvers.

Launching

mmProbEd may be started either by selecting the mmProbEd button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmProbEd [standard options] [-net <0[1>]

-net <0|1> Disable or enable a server which provides problem descriptions to other appli-
cations. By default, the server is enabled. When the server is disabled, mmProbEd
is only useful for editing problem descriptions and saving them to files.

Inputs

The menu selection File| Open... displays a dialog box for selecting a file from which to
load a MIF problem description. Several example files are included in the OOMMEF release
in the directory oommf/app/mmpe/examples. At startup, mmProbEd loads the problem
contained in oommf/app/mmpe/init.mif as an initial problem. Note: When loading a file,
mmProbEd discards comments and moves records it does not understand to the bottom
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of its output file. Use the FileSource application (Sec.9) to serve unmodified problem
descriptions.

Outputs

The menu selection File|Save as... displays a dialog box for selecting/entering a file in which
the problem description currently held by mmProbEd is to be saved. Because the internal
data format use by mmProbEd is an unordered array that does not include comments (or
unrecognized records), the simple operation of reading in a MIF file and then writing it back
out may alter the file.

Each instance of mmProbEd contains exactly one problem description at a time. When
the option -net 1 is active (the default), each also services requests from client applications
(typically solvers) for the problem description it contains.

Controls

The Options menu allows selection of MIF output format; either MIF 1.1 or MIF 1.2 may
be selected. This affects both File|Save as... file and mmSolve2D server output. See the
MIF 1.2 (Sec. 17.2, page 196) format documentation for details on the differences between
these formats.

The main panel in the mmProbEd window contains buttons corresponding to the sec-
tions in a MIF 1.x problem description. Selecting a button brings up another window through
which the contents of that section may be edited. The MIF sections and the elements they
contain are described in detail in the MIF 1.1 and MIF 1.2 documentation. Only one editing
window is displayed at a time. The windows may be navigated in order using their Next or
Previous buttons.

The Material Parameters edit window includes a pull-down list of pre-configured ma-
terial settings. NOTE: These values should not be taken as standard reference values for
these materials. The values are only approximate, and are included for convenience, and as
examples for users who wish to supply their own material types with symbolic names. To in-
troduce additional material types, edit the Material Name, Ms, A, K1, and Anisotropy Type
values as desired, and hit the Add button. (The Damp Coef and Anistropy Init settings
are not affected by the Material Types selection.) The Material Name entry will appear in
red if it does not match any name in the Material Types list, or if the name matches but one
or more of the material values differs from the corresponding value as stored in the Material
Types list. You can manage the Material Types list with the Replace and Delete buttons,
or by directly editing the file oommf /app/mmpe/local/materials; follow the format of other
entries in that file. The format is the same as in the default oommf/app/mmpe/materials
file included with the OOMMEF distribution.

The menu selection File| Exit terminates the mmProbEd application. The menu Help
provides the usual help facilities.
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9 Micromagnetic Problem File Source: FileSource

EF <9 FileSource E\@

File Help

Export: C:/Users/darius/oommf/app/mmpe/examples/probl.mif

Overview

The application FileSource provides the same service as mmProbEd (Sec. 8), supplying
MIF 1.x problem descriptions to running mmSolve2D micromagnetic solvers. As the MIF
specification evolves, mmProbEd may lag behind. There may be new fields in the MIF
specification that mmProbEd is not capable of editing, or which mmProbEd may not
pass on to solvers after loading them in from a file. To make use of such fields, a MIF file
may need to be edited “by hand” using a general purpose text editor. FileSource may then
be used to supply the MIF problem description contained in a file to a solver without danger
of corrupting its contents.

Launching

FileSource must be launched from the command line. You may specify on the command
line the MIF problem description file it should serve to client applications. The command
line is

tclsh oommf.tcl FileSource [standard options] [filename]

Although FileSource does not appear on the list of Programs that mmLaunch offers
to launch, running copies do appear on the list of Threads since they do provide a service
registered with the account service directory.

Inputs

FileSource takes its MIF problem description from the file named on the command line,
or from a file selected through the File|Open dialog box. No checking of the file contents
against the MIF specification is performed. The file contents are passed uncritically to any
client application requesting a problem description. Those client applications should raise
errors when presented with invalid problem descriptions.

Outputs

Each instance of FileSource provides the contents of exactly one file at a time. The file
name is displayed in the FileSource window to help the user associate each instance of
FileSource with the data file it provides. Each instance of FileSource accepts and services
requests from client applications (typically solvers) for the contents of the file it exports.
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The contents of the file are read at the time of the client request, so if the contents of
a file change between the time of the FileSource file selection and the arrival of a request
from a client, the new contents will be served to the client application.

Controls

The menu selection File| Exit terminates the FileSource application. The Help menu pro-
vides the usual help facilities.
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10 The 2D Micromagnetic Solver

The OOMMEF 2D micromagnetic computation engine, mmSolve, is capable of solving prob-
lems defined on a two-dimensional grid of square cells with three-dimensional spins. This
solver is older, less flexible and less extensible than the Oxs (Sec. 7) solver. Users are
encouraged to migrate to Oxs where possible.

There are two interfaces provided to mmSolve, the interactive mmSolve2D (Sec. 10.1)
interface and the command line driven batchsolve (Sec. 10.2.1) interface which can be used
in conjunction with the OOMMF Batch System (Sec. 10.2).

Problem definition for mmSolve is accomplished using input files in the MIF 1.1 format
(Sec. 17.1). Please note that this format is incompatible with the newer MIF 2.x format
used by the Oxs solver. However, the command line utility mifconvert (Sec. 16.12) can be
used to aid conversion from the MIF 1.1 format to MIF 2.1.

mmSolve will also accept files in the MIF 1.2 format (Sec. 17.2) format, provided the
CellSize record meets the restriction that the z- and y-dimensions are the same, and that
the z-dimension equals the part thickness.

Note on Tk dependence: If a problem is loaded that uses a bitmap mask file (Sec. 17.1.3),
and if that mask file is not in the PPM P3 (text) format, then mmSolve2D will launch
any2ppm (Sec. 16.1) to convert it into the PPM P3 format. Since any2ppm requires
Tk, at the time the mask file is read a valid display must be available. See the any2ppm
documentation for details.

10.1 The 2D Micromagnetic Interactive Solver: mmSolve2D

& <10>mmSolve2D == EoE <™
™ Inputs
Status: Run
Solver: Reset| LoadProblem | Run | Relax | Pause | Field- | Field+
- Exit
LA TotalField | Magnetization | DataTable
Outputs:
W Scheduled Outputs
Outputs Destination Threads Schedule
" TotalField " <1>mmbDataTable || ¥ Iteration every |5

" Magnetization || ¢ <3>mmGraph ¥ ControlPoint  every|l

& DataTable * <5=mmGraph

" <b=mmArchive

Overview

The application mmSolve2D is a micromagnetic computation engine capable of solving
problems defined on two-dimensional square grids of three-dimensional spins. Within the

110



OOMMEF architecture (see Sec. 4), mmSolve2D is both a server and a client application.
mmSolve2D is a client of problem description server applications, data table display and
storage applications, and vector field display and storage applications. mmSolve2D is the
server of a solver control service for which the only client is mmLaunch (Sec. 6). It is
through this service that mmLaunch provides a user interface window (shown above) on
behalf of mmSolve2D.

Launching

mmSolve2D may be started either by selecting the mmSolve2D button on mmLaunch, or
from the command line via

tclsh oommf.tcl mmSolve2D [standard options] [-restart <0|1>]

-restart <0|1> Affects the behavior of the solver when a new problem is loaded. Default
value is 0. When launched with -restart 1, the solver will look for basename.log
and basenamex*.omf files to restart a previous run from the last saved state (where
basename is the “Base Output Filename” specified in the input MIF 1.1 problem
specification file (Sec. 17.1)). If these files cannot be found, then a warning is issued
and the solver falls back to the default behavior (-restart 0) of starting the problem
from scratch. The specified -restart setting holds for all problems fed to the solver,
not just the first. (There is currently no interactive way to change the value of this
switch.)

Since mmSolve2D does not present any user interface window of its own, it depends on
mmULaunch to provide an interface on its behalf. The entry for an instance of mmSolve2D
in the Threads column of any running copy of mmLaunch has a checkbutton next to it.
This button toggles the presence of a user interface window through which the user may
control that instance of mmSolve2D. The user interface window is divided into panels,
providing user interfaces to the Inputs, Outputs, and Controls of mmSolve2D.

Inputs

The top panel of the user interface window may be opened and closed by toggling the
Inputs checkbutton. When open, the Inputs panel reveals two subpanels. The left subpanel
contains a list of the inputs required by mmSolve2D. There is only one item in the list:
ProblemDescription. When ProblemDescription is selected, the right subpanel (labeled
Source Threads) displays a list of applications that can supply a problem description. The
user selects from among the listed applications the one from which mmSolve2D should
request a problem description.
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Outputs

When mmSolve2D has outputs available to be controlled, a Scheduled Outputs check-
button appears in the user interface window. Toggling the Scheduled Outputs checkbutton
causes a bottom panel to open and close in the user interface window. When open, the
Scheduled Outputs panel contains three subpanels. The Outputs subpanel is filled with a
list of the types of output mmSolve2D can generate while solving the loaded problem. The
three elements in this list are TotalField, for the output of a vector field representing the
total effective field, Magnetization, for the output of a vector field representing the current
magnetization state of the grid of spins, and DataTable, for the output of a table of data
values describing other quantities of interest calculated by mmSolve2D.

Upon selecting one of the output types from the Outputs subpanel, a list of applications
appears in the Destination Threads subpanel which provide a display and/or storage service
for the type of output selected. The user may select from this list those applications to which
the selected type of output should be sent.

For each application selected, a final interface is displayed in the Schedule subpanel.
Through this interface the user may set the schedule according to which the selected type
of data is sent to the selected application for display or storage. The schedule is described
relative to events in mmSolve2D. An Iteration event occurs at every step in the solution
of the ODE. A ControlPoint event occurs whenever the solver determines that a control
point specification is met. (Control point specs are discussed in the Experiment parameters
paragraph in the MIF 1.1 documentation (Sec. 17.1), and are triggered by solver equilibrium,
simulation time, and iteration count conditions.) An Interactive event occurs for a partic-
ular output type whenever the corresponding “Interactive Outputs” button is clicked in the
Runtime Control panel. The Interactive schedule gives the user the ability to interactively
force data to be delivered to selected display and storage applications. For the lteration and
ControlPoint events, the granularity of the output delivery schedule is under user control.
For example, the user may elect to send vector field data describing the current magnetiza-
tion state to an mmDisp instance for display every 25 iterations of the ODE, rather than
every iteration.

The quantities included in DataTable output produced by mmSolve2D include:

e Iteration: The iteration count of the ODE solver.

e Field Updates: The number of times the ODE solver has calculated the effective
field.

e Sim Time (ns): The elapsed simulated time.

e Time Step (ns): The interval of simulated time spanned by the last step taken in
the ODE solver.

e Step Size: The magnitude of the last step taken by the ODE solver as a normalized
value. (This is currently the time step in seconds, multiplied by the gyromagnetic ratio
times the damping coefficient times Mj.)
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e Bx, By, Bz (mT): The z, y, and z components of the nominal applied field (see
Sec. 17.1.5).

e B (mT): The magnitude of the nominal applied field (always non-negative).

e |m x h|: The maximum of the point-wise quantity ||M x Heg||/M? over all the spins.
This “torque” value is used to test convergence to an equilibrium state (and raise
control point —torque events).

e Mx/Ms, My/Ms, Mz/Ms: The z, y, and z components of the average magnetiza-
tion of the magnetically active elements of the simulated part.

e Total Energy (J/m?): The total average energy density for the magnetically active
elements of the simulated part.

e Exchange Energy (J/m?): The component of the average energy density for the
magnetically active elements of the simulated part due to exchange interactions.

e Anisotropy Energy (J/m3): The component of the average energy density for
the magnetically active elements of the simulated part due to crystalline and surface
anisotropies.

e Demag Energy (J/m?®): The component of the average energy density for the mag-
netically active elements of the simulated part due to self-demagnetizing fields.

e Zeeman Energy (J/m3): The component of average energy density for the mag-
netically active elements of the simulated part due to interaction with the applied
field.

e Max Angle: The maximum angle (in degrees) between the magnetization orientation
of any pair of neighboring spins in the grid. (The neighborhood of a spin is the same
as that defined by the exchange energy calculation.)

In addition, the solver automatically keeps a log file that records the input problem specifi-
cation and miscellaneous runtime information. The name of this log file is basename.log,
where basename is the “Base Output Filename” specified in the input problem specification.
If this file already exists, then new entries are appended to the end of the file.

Controls

The middle section of the user interface window contains a series of buttons providing user
control over the solver. After a problem description server application has been selected, the
LoadProblem button triggers a fetch of a problem description from the selected server. The
LoadProblem button may be selected at any time to (re-)load a problem description from
the currently selected server. After loading a new problem the solver goes automatically
into a paused state. (If no problem description server is selected when the LoadProblem
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button is invoked, nothing will happen.) The Reset button operates similarly, except that
the current problem specifications are used.

Once a problem is loaded, the solver can be put into any of three states: run, relax
and pause. Selecting Relax puts the solver into the “relax” state, where it runs until a
control point is reached, after which the solver pauses. If the Relax button is reselected
after reaching a control point, then the solver will simply re-pause immediately. The Field+
or Field— button must be invoked to change the applied field state. (Field state schedules
are discussed below.) The Run selection differs in that when a control point is reached, the
solver automatically steps the nominal applied field to the next value, and continues. In
“run” mode the solver will continue to process until there are no more applied field states in
the problem description. At any time the Pause button may be selected to pause the solver.
The solver will stay in this state until the user reselects either Run or Relax. The current
state of the solver is indicated in the Status line in the center panel of the user interface
window.

The problem description (MIF 1.x format) specifies a fixed applied field schedule (see
Sec. 17.1.5). This schedule defines an ordered list of applied fields, which the solver in
“run” mode steps through in sequence. The Field— and Field4+ buttons allow the user to
interactively adjust the applied field sequence. FEach click on the Field4+ button advances
forward one step through the specified schedule, while Field— reverses that process. In
general, the step direction is not related to the magnitude of the applied field. Also note
that hitting these buttons does not generate a “ControlPoint” event. In particular, if you
are manually accelerating the progress of the solver through a hysteresis loop, and want to
send non-ControlPoint data to a display or archive widget before advancing the field, then
you must use the appropriate “Interactive Output” button.

The second row of buttons in the interaction control panel, TotalField, Magnetization
and DataTable, allow the user to view the current state of the solver at any time. These
buttons cause the solver to send out data of the corresponding type to all applications for
which the “Interactive” schedule button for that data type has been selected, as discussed
in the Outputs section above.

At the far right of the solver controls is the Exit button, which terminates mmSolve2D.
Simply closing the user interface window does not terminate mmSolve2D, but only closes
the user interface window. To kill the solver the Exit button must be pressed.

Detalils

Given a problem description, mmSolve2D integrates the Landau-Lifshitz equation [10, 12]

dM oalet
:_‘W‘MXHeﬂ_m

s M M x (M x Heg) (5)

where

M s the pointwise magnetization (A/m),
H.s  is the pointwise effective field (A/m),
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7 is the Landau-Lifshitz gyromagnetic ratio (m/(A-s)),

a s the damping coefficient (dimensionless).

(Compare to (2), page 69.)
The effective field is defined as

The average energy density E is a function of M specified by Brown’s equations [4], includ-
ing anisotropy, exchange, self-magnetostatic (demagnetization) and applied field (Zeeman)
terms.

The micromagnetic problem is impressed upon a regular 2D grid of squares, with 3D
magnetization spins positioned at the centers of the cells. Note that the constraint that the
grid be composed of square elements takes priority over the requested size of the grid. The
actual size of the grid used in the computation will be the nearest integral multiple of the
grid’s cell size to the requested size. It is important when comparing the results from grids
with different cell sizes to account for the possible change in size of the overall grid.

The anisotropy and applied field energy terms are calculated assuming constant magne-
tization in each cell. The exchange energy is calculated using the eight-neighbor bilinear
interpolation described in [5], with Neumann boundary conditions. The more common four-
neighbor scheme is available as a compile-time option. Details can be found in the source-code
file oommf/app/mmsolve/magelt.cc.

The self-magnetostatic field is calculated as the convolution of the magnetization against
a kernel that describes the cell to cell magnetostatic interaction. The convolution is eval-
uated using fast Fourier transform (FFT) techniques. Several kernels are supported; these
are selected as part of the problem description in MIF 1.x format; for details see Sec. 17.1.2:
Demag specification. Each kernel represents a different interpretation of the discrete magne-
tization. The recommended model is ConstMag, which assumes the magnetization is constant
in each cell, and computes the average demagnetization field through the cell using formulae
from [15] and [2].

The Landau-Lifshitz ODE (5) is integrated using a second order predictor-corrector tech-
nique of the Adams type. The right side of (5) at the current and previous step is extrapo-
lated forward in a linear fashion, and is integrated across the new time interval to obtain a
quadratic prediction for M at the next time step. At each stage the spins are renormalized
to M, before evaluating the energy and effective fields. The right side of (5) is evaluated at
the predicted M, which is then combined with the value at the current step to produce a
linear interpolation of dM/dt across the new interval. This is then integrated to obtain the
final estimate of M at the new step. The local (one step) error of this procedure should be
O(A#).

The step is accepted if the total energy of the system decreases, and the maximum error
between the predicted and final M is smaller than a nominal value. If the step is rejected,
then the step size is reduced and the integration procedure is repeated. If the step is accepted,
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then the error between the predicted and final M is used to adjust the size of the next step.
No fixed ratio between the previous and current time step is assumed.

A fourth order Runge-Kutta solver is used to prime the predictor-corrector solver, and is
used as a backup in case the predictor-corrector fails to find a valid step. The Runge-Kutta
solver is not selectable as the primary solver at runtime, but may be so selected at compile
time by defining the RUNGE_KUTTA_ODE macro. See the file oommf/app/mmsolve/grid.cc for
all details of the integration procedure.

For a given applied field, the integration continues until a control point (cf. Experiment
parameters, Sec. 17.1.5) is reached. A control point event may be raised by the ODE iteration
count, elapsed simulation time, or by the maximum value of ||MxH,g||/MZ dropping below
a specified control point —torque value (implying an equilibrium state has been reached).

Depending on the problem size, mmSolve2D can require a good deal of working memory.
The exact amount depends on a number of factors, but a reasonable estimate is 5 MB +
1500 bytes per cell. For example, a 1 um x 1 um part discretized with 5 nm cells will require
approximately 62 MB.

Known Bugs

mmSolve2D requires the damping coefficient to be non-zero. See the MIF 1.1 documenta-
tion (Sec. 17.1) for details on specifying the damping coefficient.

When multiple copies of mmLaunch are used, each can have its own interface to a
running copy of mmSolve2D. When the interface presented by one copy of mmLaunch
is used to set the output schedule in mmSolve2D, those settings are not reflected in the
interfaces presented by other copies of mmLaunch. For example, although the first interface
sets a schedule that DataTable data is to be sent to an instance of mmGraph every third
Iteration, there is no indication of that schedule presented to the user in the second interface
window. It is unusual to have more than one copy of mmLaunch running simultaneously.
However, this bug also appears when one copy of mmLaunch is used to load a problem
and start a solver, and later a second copy of mmLaunch is used to monitor the status of
that running solver.

10.2 OOMMEF 2D Micromagnetic Solver Batch System

The OOMMF Batch System (OBS) provides a scriptable interface to the same micromag-
netic solver engine used by mmSolve2D (Sec. 10.1), in the form of three Tcl applicatons
(batchmaster, batchslave, and batchsolve) that provide support for complex job schedul-
ing. All OBS script files are in the OOMMEF distribution directory app/mmsolve/scripts.

Unlike much of the OOMMEF package, the OBS is meant to be driven primarily from the
command line or shell (batch) script. OBS applications are launched from the command line
using the bootstrap application (Sec. 5).
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10.2.1 2D Micromagnetic Solver Batch Interface: batchsolve
Overview

The application batchsolve provides a simple command line interface to the OOMMEF 2D
micromagnetic solver engine.

Launching

The application batchsolve is launched by the command line:

tclsh oommf.tcl batchsolve [standard options]
[-end_exit <0|1>] [-end_paused] [-interface <0|1>] \
[-restart <0|1>] [-start_paused] [filel

where

-end_exit <0|1> Whether or not to explicitly call exit at bottom of batchsolve.tcl.
When launched from the command line, the default is to exit after solving the problem
in file. When sourced into another script, like batchslave.tcl, the default is to wait
for the caller script to provide further instructions.

-interface <0|1> Whether to register with the account service directory application, so
that mmLaunch (Sec. 6), can provide an interactive interface. Default = 1 (do
register), which will automatically start account service directory and host service
directory applications as necessary.

-start_paused Pause solver after loading problem.

-end_paused Pause solver and enter event loop at bottom of batchsolve.tcl rather than
just falling off the end (the effect of which will depend on whether or not Tk is loaded).

-restart <0|1> Determines solver behavior when a new problem is loaded. If 1, then the
solver will look for basename.log and basename*.onf files to restart a previous run
from the last saved state (where basename is the “Base Output Filename” specified
in the input problem specification). If these files cannot be found, then a warning is
issued and the solver falls back to the default behavior (equivalent to -restart 0)
of starting the problem from scratch. The specified -restart setting holds for all
problems fed to the solver, not just the first.

file Immediately load and run the specified MIF 1.x file.

The input file file should contain a Micromagnetic Input Format (Sec. 17) 1.x problem
description, such as produced by mmProbEd (Sec. 8). The batch solver searches several
directories for this file, including the current working directory, the data and scripts sub-
directories, and parallel directories relative to the directories app/mmsolve and app/mmpe
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in the OOMMEF distribution. Refer to the mif path variable in batchsolve.tcl for the
complete list.

If ~interface is set to 1 (enabled), batchsolve registers with the account service direc-
tory application, and mmLaunch will be able to provide an interactive interface. Using this
interface, batchsolve may be controlled in a manner similar to mmSolve2D (Sec. 10.1).
The interface allows you to pause, un-pause, and terminate the current simulation, as well
as to attach data display applications to monitor the solver’s progress. If more interactive
control is needed, mmSolve2D should be used.

If -interface is 0 (disabled), batchsolve does not register, leaving it without an in-
terface, unless it is sourced into another script (e.g., batchslave.tcl) that arranges for an
interface on the behalf of batchsolve.

Use the -start_paused switch to monitor the progress of batchsolve from the very
start of a simulation. With this switch the solver will be paused immediately after loading
the specified MIF file, so you can bring up the interactive interface and connect display ap-
plications before the simulation begins. Start the simulation by selecting the Run command
from the interactive interface. This option cannot be used if -interface is disabled.

The -end_paused switch insures that the solver does not automatically terminate after
completing the specified simulation. This is not generally useful, but may find application
when batchsolve is called from inside a Tcl-only wrapper script.

Note on Tk dependence: If a problem is loaded that uses a bitmap mask file (Sec. 17.1.3),
and if that mask file is not in the PPM P3 (text) format, then batchsolve will launch
any2ppm (Sec. 16.1) to convert it into the PPM P3 format. Since any2ppm requires
Tk, at the time the mask file is read a valid display must be available. See the any2ppm
documentation for details.

Output

The output may be changed by a Tcl wrapper script (see Sec. 10.2.1), but the default
output behavior of batchsolve is to write tabular text data and the magnetization state
at the control point for each applied field step. The tabular data are appended to the
file basename.odt, where basename is the “Base Output Filename” specified in the input
MIF 1.x file. See the routine GetTextData in batchsolve.tcl for details, but at present
the output consists of the solver iteration count, nominal applied field B, reduced average
magnetization m, and total energy. This output is in the ODT file format.

The magnetization data are written to a series of OVEF (OOMMEF Vector Field) files,
basename.fieldnnnn.omf, where nnnn starts at 0000 and is incremented at each applied
field step. (The ASCII text header inside each file records the nominal applied field at that
step.) These files are viewable using mmDisp (Sec. 13).

The solver also automatically appends the input problem specification and miscellaneous
runtime information to the log file basename.log.
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Programmer’s interface

In addition to directly launching batchsolve from the command line, batchsolve.tcl may
also be sourced into another Tcl script that provides additional control structures. Within
the scheduling system of OBS, batchsolve.tcl is sourced into batchslave, which provides
additional control structures that support scheduling control by batchmaster. There are
several variables and routines inside batchsolve.tcl that may be accessed and redefined
from such a wrapper script to provide enhanced functionality.

Global variables

mif A Tcl handle to a global mms mif object holding the problem description defined by
the input MIF 1.x file.

solver A Tcl handle to the mms_solver object.

search_path Directory search path used by the FindFile proc (see below).

Refer to the source code and sample scripts for details on manipulation of these variables.

Batchsolve procs

The following Tcl procedures are designed for external use and/or redefinition:
SolverTasklInit Called at the start of each task.

BatchTasklIterationCallback Called after each iteration in the simulation.
BatchTaskRelaxCallback Called at each control point reached in the simulation.
SolverTaskCleanup Called at the conclusion of each task.

FindFile Searches the directories specified by the global variable search_path for a specified
file. The default SolverTaskInit proc uses this routine to locate the requested input
MIF file.

SolverTaskInit and SolverTaskCleanup accept an arbitrary argument list (args), which
is copied over from the args argument to the BatchTaskRun and BatchTaskLaunch procs
in batchsolve.tcl. Typically one copies the default procs (as needed) into a task script,
and makes appropriate modifications. You may (re-)define these procs either before or after
sourcing batchsolve.tcl. See Sec. 10.2.2.4 for example scripts.
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10.2.2 2D Micromagnetic Solver Batch Scheduling System
Overview

The OBS supports complex scheduling of multiple batch jobs with two applications, batch-
master and batchslave. The user launches batchmaster and provides it with a task
script. The task script is a Tcl script that describes the set of tasks for batchmaster
to accomplish. The work is actually done by instances of batchslave that are launched
by batchmaster. The task script may be modeled after the included simpletask.tcl or
multitask.tcl sample scripts (Sec. 10.2.2.4).

The OBS has been designed to control multiple sequential and concurrent micromagnetic
simulations, but batchmaster and batchslave are completely general and may be used to
schedule other types of jobs as well.

10.2.2.1 Master Scheduling Control: batchmaster The application batchmaster
is launched by the command line:

tclsh oommf.tcl batchmaster [standard options] task_script \
[host [port]]

task_script is the user defined task (job) definition Tcl script,
host specifies the network address for the master to use (default is localhost),

port is the port address for the master (default is 0, which selects an arbitrary open port).

When batchmaster is run, it sources the task script. Tcl commands in the task script
should modify the global object $TaskInfo to inform the master what tasks to perform and
optionally how to launch slaves to perform those tasks. The easiest way to create a task
script is to modify one of the example scripts in Sec. 10.2.2.4. More detailed instructions are
in Sec. 10.2.2.3.

After sourcing the task script, batchmaster launches all the specified slaves, initializes
each with a slave initialization script, and then feeds tasks sequentially from the task list to
the slaves. When a slave completes a task it reports back to the master and is given the
next unclaimed task. If there are no more tasks, the slave is shut down. When all the tasks
are complete, the master prints a summary of the tasks and exits.

When the task script requests the launching and controlling of jobs off the local machine,
with slaves running on remote machines, then the command line argument host must be
set to the local machine’s network name, and the $TaskInfo methods AppendSlave and
ModifyHostList will need to be called from inside the task script. Furthermore, OOMMF
does not currently supply any methods for launching jobs on remote machines, so a task
script which requests the launching of jobs on remote machines requires a working rsh
command or equivalent. See Sec. 10.2.2.3 for details.
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10.2.2.2 Task Control: batchslave The application batchslave may be launched by
the command line:

tclsh oommf.tcl batchslave [standard options] \
host port id password [auxscript [arg ...]]

host, port Host and port at which to contact the master to serve.
id, password ID and password to send to the master for identification.

auxscript arg ... The name of an optional script to source (which actually performs the
task the slave is assigned), and any arguments it needs.

In normal operation, the user does not launch batchslave. Instead, instances of batch-
slave are launched by batchmaster as instructed by a task script. Although batchmaster
may launch any slaves requested by its task script, by default it launches instances of batch-
slave.

The function of batchslave is to make a connection to a master program, source the
auxscript and pass it the list of arguments aux_arg .... Then it receives commands
from the master, and evaluates them, making use of the facilities provided by auxscript.
Each command is typically a long-running one, such as solving a complete micromagnetic
problem. When each command is complete, the batchslave reports back to its master
program, asking for the next command. When the master program has no more commands
batchslave terminates.

Inside batchmaster, each instance of batchslave is launched by evaluating a Tcl com-
mand. This command is called the spawn command, and it may be redefined by the task
script in order to completely control which slave applications are launched and how they are
launched. When batchslave is to be launched, the spawn command might be:

exec tclsh oommf.tcl batchslave -tk 0 -- $server(host) $server(port) \
$slaveid $passwd batchsolve.tcl -restart 1 &

The Tcl command exec is used to launch subprocesses. When the last argument to exec
is &, the subprocess runs in the background. The rest of the spawn command should look
familiar as the command line syntax for launching batchslave.

The example spawn command above cannot be completely provided by the task script,
however, because parts of it are only known by batchmaster. Because of this, the task
script should define the spawn command using “percent variables” which are substituted by
batchmaster. Continuing the example, the task script provides the spawn command:

exec %tclsh %oommf batchslave -tk O %connect_info \
batchsolve.tcl -restart 1
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batchmaster replaces %tclsh with the path to tclsh, and %oommf with the path to the
OOMMEF bootstrap application. It also replaces %connect_info with the five arguments from
-- through $password that provide batchslave the hostname and port where batchmaster
is waiting for it to report to, and the ID and password it should pass back. In this example,
the task script instructs batchslave to source the file batchsolve.tcl and pass it the
arguments -restart 1. Finally, batchmaster always appends the argument & to the spawn
command so that all slave applications are launched in the background.

The communication protocol between batchmaster and batchslave is evolving and is
not described here. Check the source code for the latest details.

10.2.2.3 Batch Task Scripts The application batchmaster creates an instance of a
BatchTaskObj object with the name $TaskInfo. The task script uses method calls to this
object to set up tasks to be performed. The only required call is to the AppendTask method,

e.g.,
$TaskInfo AppendTask A "BatchTaskRun taskA.mif"

This method expects two arguments, a label for the task (here “A”) and a script to accom-
plish the task. The script will be passed across a network socket from batchmaster to a
slave application, and then the script will be interpreted by the slave. In particular, keep in
mind that the file system seen by the script will be that of the machine on which the slave
process is running.

This example uses the default batchsolve.tcl procs to run the simulation defined by
the taskA.mif MIF 1.x file. If you want to make changes to the MIF problem specifications
on the fly, you will need to modify the default procs. This is done by creating a slave
initialization script, via the call

$TaskInfo SetSlaveInitScript { <insert script here> }

The slave initialization script does global initializations, and also usually redefines the
SolverTaskInit proc; optionally the BatchTaskIterationCallback, BatchTaskRelaxCallback
and SolverTaskCleanup procs may be redefined as well. At the start of each task SolverTaskInit

is called by BatchTaskRun (in batchsolve.tcl), after each iteration BatchTaskIterationCallback
is executed, at each control point BatchTaskRelaxCallback is run, and at the end of each

task SolverTaskCleanup is called. SolverTaskInit and SolverTaskCleanup are passed

the arguments that were passed to BatchTaskRun. A simple SolverTaskInit proc could be

proc SolverTaskInit { args } {
global mif basename outtextfile
set A [lindex $args 0]
set outbasename "$basename-A$A"
$mif SetA $A
$mif SetOutBaseName $outbasename
set outtextfile [open "$outbasename.odt" "at+"]

122



puts $outtextfile [GetTextData header \
"Run on $basename.mif, with A=[$mif GetA]"]
}

This proc receives the exchange constant A for this task on the argument list, and makes use of
the global variables mif and basename. (Both should be initialized in the slave initialization
script outside the SolverTaskInit proc.) It then stores the requested value of A in the mif
object, sets up the base filename to use for output, and opens a text file to which tabular
data will be appended. The handle to this text file is stored in the global outtextfile,
which is closed by the default SolverTaskCleanup proc. A corresponding task script could
be

$TaskInfo AppendTask "A=13e-12 J/m" "BatchTaskRun 13e-12"

which runs a simulation with A set to 13 x 1072 J/m. This example is taken from the
multitask.tcl script in Sec. 10.2.2.4. (For commands accepted by mif objects, see the file
mmsinit.cc. Another object than can be gainfully manipulated is solver, which is defined
in solver.tcl.)

If you want to run more than one task at a time, then the $TaskInfo method AppendSlave
will have to be invoked. This takes the form

$TaskInfo AppendSlave <spawn count> <spawn command>

where <spawn command> is the command to launch the slave process, and <spawn count> is
the number of slaves to launch with this command. (Typically <spawn count> should not
be larger than the number of processors on the target system.) The default value for this
item (which gets overwritten with the first call to $TaskInfo AppendSlave) is

1 {Oc_Application Exec batchslave -tk O %connect_info batchsolve.tcl}

The Tcl command Oc_Application Exec is supplied by OOMMEF and provides access to
the same application-launching capability that is used by the OOMMEF bootstrap applica-
tion (Sec. 5). Using a <spawn command> of Oc_Application Exec instead of exec %tclsh
%hoommf saves the spawning of an additional process. The default <spawn command> launches
the batchslave application, with connection information provided by batchmaster, and
using the auxscript batchsolve.tcl.

Before evaluating the <spawn command>, batchmaster applies several percent-style sub-
stitutions useful in slave launch scripts: %tclsh, %oommf, %connect_info, %oommf_root, and
%%. The first is the Tcl shell to use, the second is an absolute path to the OOMMEF boot-
strap program on the master machine, the third is connection information needed by the
batchslave application, the fourth is the path to the OOMMEF root directory on the master
machine, and the last is interpreted as a single percent. batchmaster automatically ap-
pends the argument & to the <spawn command> so that the slave applications are launched
in the background.

To launch batchslave on a remote host, use rsh in the spawn command, e.g.,
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# FILE: simpletask.tcl

#

# This is a sample batch task file. Usage example:
#

#  tclsh oommf.tcl batchmaster simpletask.tcl

#

# Form task list

$TaskInfo AppendTask A "BatchTaskRun taskA.mif"
$TaskInfo AppendTask B "BatchTaskRun taskB.mif"
$TaskInfo AppendTask C "BatchTaskRun taskC.mif"

Figure 1: Sample task script simpletask.tcl.

$TaskInfo AppendSlave 1 {exec rsh foo tclsh oommf/oommf.tcl \
batchslave -tk 0 %connect_info batchsolve.tcl}

This example assumes tclsh is in the execution path on the remote machine foo, and
OOMMF is installed off of your home directory. In addition, you will have to add the
machine foo to the host connect list with

$TaskInfo ModifyHostList +foo

and batchmaster must be run with the network interface specified as the server host (instead
of the default localhost), e.g.,

tclsh oommf.tcl batchmaster multitask.tcl bar

where bar is the name of the local machine.
This may seem a bit complicated, but the examples in the next section should make
things clearer.

10.2.2.4 Sample task scripts The first sample task script (Fig. 1) is a simple exam-
ple that runs the 3 micromagnetic simulations described by the MIF 1.x files taskA.mif,
taskB.mif and taskC.mif. It is launched with the command

tclsh oommf.tcl batchmaster simpletask.tcl

This example uses the default slave launch script, so a single slave is launched on the current
machine, and the 3 simulations will be run sequentially. Also, no slave initialization script
is given, so the default procs in batchsolve.tcl are used. Output will be magnetization
states and tabular data at each control point, stored in files on the local machine with base
names as specified in the MIF files.

The second sample task script (Fig. 2) builds on the previous example by defining
BatchTaskIterationCallback and BatchTaskRelaxCallback procedures in the slave init
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script. The first set up to write tabular data every 10 iterations, while the second writes
tabular data on each control point event. The data is written to the output file specified by
the Base Output Filename entry in the input MIF files. Note that there is no magnetiza-
tion vector field output in this example. This task script is launched the same way as the
previous example:

tclsh oommf.tcl batchmaster octrltask.tcl

The third task script (Fig. 3) is a more complicated example running concurrent processes
on two machines. This script should be run with the command

tclsh oommf.tcl batchmaster multitask.tcl bar

where bar is the name of the local machine.

Near the top of the multitask.tcl script several Tcl variables (RMT_MACHINE through
A 1ist) are defined; these are used farther down in the script. The remote machine is speci-
fied as foo, which is used in the $TaskInfo AppendSlave and $TaskInfo ModifyHostList
commands.

There are two AppendSlave commands, one to run two slaves on the local machine, and
one to run a single slave on the remote machine (foo). The latter changes to a specified
working directory before launching the batchslave application on the remote machine.
(For this to work you must have rsh configured properly. In the future it may be possible to
launch remote commands using the OOMMEF account server application, thereby lessening
the reliance on system commands like rsh.)

Below this the slave initialization script is defined. The Tcl regsub command is used
to place the task script defined value of BASEMIF into the init script template. The init
script is run on the slave when the slave is first brought up. It first reads the base MIF file
into a newly created mms mif instance. (The MIF file needs to be accessible by the slave
process, irrespective of which machine it is running on.) Then replacement SolverTaskInit
and SolverTaskCleanup procs are defined. The new SolverTaskInit interprets its first
argument as a value for the exchange constant A. Note that this is different from the default
SolverTaskInit proc, which interprets its first argument as the name of a MIF 1.x file to
load. With this task script, a MIF file is read once when the slave is brought up, and then
each task redefines only the value of A for the simulation (and corresponding changes to the
output filenames and data table header).

Finally, the Tcl loop structure

foreach A $A_list {
$TaskInfo AppendTask "A=$A" "BatchTaskRun $A"
}

is used to build up a task list consisting of one task for each value of A in A_list (defined
at the top of the task script). For example, the first value of A is 10e-13, so the first task
will have the label A=10e-13 and the corresponding script is BatchTaskRun 10e-13. The
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FILE: octrltask.tcl

#

#

# This is a sample batch task file, with expanded output control.
# Usage example:
#
#
#
#

tclsh oommf.tcl batchmaster octrltask.tcl

"Every" output selection count
set SKIP_COUNT 10

# Initialize solver. This is run at global scope
set init_script {
# Text output routine
proc MyTextOutput {} {
global outtextfile
puts $outtextfile [GetTextData datal
flush $outtextfile
b
# Change control point output
proc BatchTaskRelaxCallback {} {
MyTextOutput
}
# Add output on iteration events
proc BatchTaskIterationCallback {} {
global solver
set count [$solver GetODEStepCount]
if { ($count % __SKIP_COUNT__) == 0 } { MyTextOutput }

# Substitute $SKIP_COUNT in for __SKIP_COUNT__ in above "init_script"
regsub -all -- __SKIP_COUNT__ $init_script $SKIP_COUNT init_script
$TaskInfo SetSlaveInitScript $init_script

# Form task list
$TaskInfo AppendTask A "BatchTaskRun taskA.mif"

$TaskInfo AppendTask B "BatchTaskRun taskB.mif"
$TaskInfo AppendTask C "BatchTaskRun taskC.mif"

Figure 2: Task script with iteration output octrltask.tcl.
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value 10e-13 is passed on by BatchTaskRun to the SolverTaskInit proc, which has been
redefined to process this argument as the value for A, as described above.

There are 6 tasks in all, and 3 slave processes, so the first three tasks will run concurrently
in the 3 slaves. As each slave finishes it will be given the next task, until all the tasks are
complete.

# FILE: multitask.tcl

#

# This is a sample batch task file. Usage example:

#

# tclsh oommf.tcl batchmaster multitask.tcl hostname [port]
#

# Task script configuration

set RMT_MACHINE foo

set RMT_TCLSH tclsh

set RMT_OOMMF "/path/to/oommf/oommf .tcl"

set RMT_WORK_DIR "/path/to/oommf/app/mmsolve/data"

set BASEMIF taskA

set A_list { 10e-13 10e-14 10e-15 10e-16 10e-17 10e-18 }

# Slave launch commands
$TaskInfo ModifyHostList +$RMT_MACHINE
$TaskInfo AppendSlave 2 "exec %tclsh %oommf batchslave -tk O \
%connect_info batchsolve.tcl"
$TaskInfo AppendSlave 1 "exec rsh $RMT_MACHINE \
cd $RMT_WORK_DIR \\\;\
$RMT_TCLSH $RMT_OOMMF batchslave -tk O %connect_info batchsolve.tcl"

# Slave initialization script (with batchsolve.tcl proc
# redefinitions)
set init_script {
# Initialize solver. This is run at global scope
set basename __BASEMIF__ ;# Base mif filename (global)
mms_mif New mif
$mif Read [FindFile ${basenamel}.mif]
# Redefine TaskInit and TaskCleanup proc's
proc SolverTaskInit { args } {
global mif outtextfile basename
set A [lindex $args O]
set outbasename "$basename-A$A"
$mif SetA $A
$mif SetOutBaseName $outbasename
set outtextfile [open "$outbasename.odt" "a+"]
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puts $outtextfile [GetTextData header \
"Run on $basename.mif, with A=[$mif GetA]"]
flush $outtextfile
}
proc SolverTaskCleanup { args } {
global outtextfile
close $outtextfile

b
+
# Substitute $BASEMIF in for __BASEMIF__ in above script
regsub -all -- __BASEMIF__ $init_script $BASEMIF init_script

$TaskInfo SetSlaveInitScript $init_script

# Create task list
foreach A $A_list {
$TaskInfo AppendTask "A=$A" "BatchTaskRun $A"

Figure 3: Advanced sample task script multitask.tcl.
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11 Data Table Display: mmDataTable

Data: mmDataTable 1.2.0.5 (=]
v Oxs_CGEvolve:evolve:Max mxHxm
v Oxs_CGEvolve:evolve:Total energy

Oxs_CGEvolve:evolve:Delta E
EF <1> mmDataTable E\@ Oxs_CGEvolve:evolve:Bracket count
RHERR R e Oxs_CGEvolve:evolve:Line min count
Stage : 24 Oxs_CGEvolverevolve:Conjugate cycle count
Iteration 81875 Oxs_CGEvolve:evolve:Cycle count
Max Spin Ang (deg) : 25.3 Oxs_CGEvolve:evolve:Cycle sub count
Run Max Spin Ang (deg) : 25.7 Oxs_CGEvolve:evolve:Energy calc count
Oxs_UniformExchange:Energy (J) : 7.565052e-018 v Oxs_UniformExchange:Energy
Oxs_UniaxialAnisotropy:Energy (J) : 1.061449e-018 v Oxs_UniformExchange:Max Spin Ang
Oxs_Demag:Energy (J) : 1.841304e-016 Oxs_UniformExchange:Stage Max Spin Ang
Oxs_UZeeman:Energy (J) : -8.654488e-016 v Oxs_UniformExchange:Run Max Spin Ang
evolve:Total energy (J) : -6.726919%e-016 I 2 E
evolve:Max mxHxm (A/m) : 644.155 v Oxs_Demag:Energy
v Oxs_UZeeman:Energy

Oxs_UZeeman:B
Oxs_UZeeman:Bx
Oxs_UZeeman:By
Oxs_UZeeman:Bz

v Oxs_MinDriver:Iteration
Oxs_MinDriver:Stage iteration

v Oxs_MinDriver:Stage
Oxs_MinDriver:mx
Oxs_MinDriver:zmy
Oxs_MinDriver:mz

Overview

The application mmDataTable provides a data display service to its client applications. It
accepts data from clients which are displayed in a tabular format in a top-level window. Its
typical use is to display the evolving values of quantities computed by micromagnetic solver
programs.

Launching

mmDataTable may be started either by selecting the mmDataTable button on mm-
Launch, or from the command line via

tclsh oommf.tcl mmDataTable [standard options] [-net <0|1>]
-net <0|1> Disable or enable a server which allows the data displayed by mmDataTable

to be updated by another application. By default, the server is enabled. When the
server is disabled, mmProbEd is only useful if it is embedded in another application.
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Inputs

The client application(s) that send data to mmDataTable for display control the flow of
data. The user, interacting with the mmDataTable window, controls how the data is
displayed. Upon launch, mmDataTable displays only a menubar. Upon user request, a
display window below the menubar displays data values.

Each message from a client contains a list of (name, value, units) triples containing data
for display. For example, one element in the list might be {Magnetization 800000 A/m}.
mmDataTable stores the latest value it receives for each name. Earlier values are discarded
when new data arrives from a client.

Outputs

mmDataTable does not support any data output or storage facilities. To save tabular
data, use the mmGraph (Sec. 12) or mmArchive (Sec. 14) applications.

Controls

The Data menu holds a list of all the data names for which mmDataTable has received
data. Initially, mmDataTable has received no data from any clients, so this menu is empty.
As data arrives from clients, the menu fills with the list of data names. Each data name
on the list lies next to a checkbutton. When the checkbutton is toggled from off to on, the
corresponding data name and its value and units are displayed at the bottom of the display
window. When the checkbutton is toggled from on to off, the corresponding data name is
removed from the display window. In this way, the user selects from all the data received
what is to be displayed. Selecting the dashed rule at the top of the Data menu detaches it
so the user may easily click multiple checkbuttons.

Displayed data values can be individually selected (or deselected) with a left mouse button
click on the display entry. Highlighting is used to indicated which data values are currently
selected. The Options menu also contains commands to select or deselect all displayed
values. The selected values can be copied into the cut-and-paste (clipboard) buffer with the
CTRL-c key combination, or the Options|Copy menu command.

The data value selection mechanism is also used for data value formatting control. The
Options| Format menu command brings up a Format dialog box to change the justification
and format specification string. The latter is the conversion string passed to the Tcl format
command, which uses the C printf format codes. If the Adjust:Selected radiobutton is
active, then the specification will be applied to only the currently selected (highlighted) data
values. Alternately, if Adjust:All is active, then the specification will be applied to all data
values, and will additionally become the default specification.

A right mouse button click on a display entry will select that entry, and bring up the
Format dialog box with the justification and format specifications of the selected entry.
These specifications, with any revisions, may then be applied to all of the selected entries.
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If a value cannot be displayed with the selected format specification string, e.g., if a
“%d” integer format were applied to a string containing a decimal point, then the value
will be printed in red in the form as received by mmDataTable, without any additional
formatting.

The menu selection File| Reset reinitializes the mmDataTable application to its original
state, clearing the display and the Data menu. The reset operation is also automatically
invoked upon receipt of new data following a data set close message from a solver application.
The menu selection File | Exit terminates the application. The menu Help provides the usual

help facilities.
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12 Data Graph Display: mmGraph

X-Axis: mmGraph 1.2,

Oxs CGEvalve: Y1-Axis: mmGraph 1.2.0.5 (=]
EF <3> mmGraph E\@ Oxs_CGEvolve:evo Oxs_CGEvolve:evolve:Max mxHxm
File X Y1 Y2 Options Help oS BEVONERYD Oxs_CGEvolveievolveTotal energy

Oxs CGEvolve:evo Oxs_CGEvolve:evolve:Delta E
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Overview

The application mmGraph provides a data display service similar to that of mmDataT-
able (Sec. 11). The usual data source is a running solver, but rather than the textual output
provided by mmDataTable, mmGraph produces 2D line plots. mmGraph also stores
the data it receives, so it can produce multiple views of the data and can save the data to
disk. Postscript output is also supported.

Launching

mmGraph may be started either by selecting the mmGraph button on mmLaunch or
from the command line via

tclsh oommf.tcl mmGraph [standard options] [-net <0[|1>] [loadfile ...]

-net <0|1> Disable or enable a server which allows the data displayed by mmGraph to
be updated by another application. By default, the server is enabled. When the server
is disabled, mmGraph may only input data from a file.
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loadfile ... Optional list of data (ODT) files to preload.

Inputs

Input to mmGraph may come from either a file in the ODT format (Sec. 18), or when
-net 1 (the default) is active, from a client application (typically a running solver). The
File| Open... dialog box is used to select an input file. Receipt of data from client applica-
tions is the same as for mmDataTable (Sec. 11). In either case, input data are appended
to any previously held data.

When reading from a file, mmGraph will automatically decompress data using the local
customization (Sec. 2.3.2) “Nb_InputFilter decompress” option to Oc_Option. For details,
see the discussion on file translation in the Inputs section of the mmDisp documentation
(Sec. 13).

Curve breaks (i.e., separation of a curve into disjoint segments) are recorded in the
data storage buffer via curve break records. These records are generated whenever a new
data table is detected by mmGraph, or when requested by the user using the mmGraph
Options| Break Curves menu option.

Outputs

Unlike mmDataTable, mmGraph internally stores the data sent to it. These data may
be written to disk via the File|Save As... dialog box. If the file specified already exists,
then mmGraph output is appended to that file. The output is in the tabular ODT format
described in Sec. 18. The data are segmented into separate Table Start/Table End blocks
across each curve break record.

By default, all data currently held by mmGraph is written, but the Save: Selected
Data option presented in the File|Save As... dialog box causes the output to be restricted
to those curves currently selected for display. In either case, the graph display limits do not
affect the output.

The save operation writes records that are held by mmGraph at the time the File|Save
As... dialog box OK button is invoked. Additionally, the Auto Save option in this dialog
box may be used to automatically append to the specified file each new data record as it
is received by mmGraph. The appended fields will be those chosen at the time of the
save operation, i.e., subsequent changing of the curves selected for display does not affect
the automatic save operation. The automatic save operation continues until either a new
output file is specified, the Options|Stop Autosave control is invoked, or mmGraph is
terminated.

The File|Print... dialog is used to produce a Postscript file of the current graph. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |1pr. (The exact form is system dependent.)
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Controls

Graphs are constructed by selecting any one item off the X-axis menu, and any number of
items off the Y1-axis and Y2-axis menus. The yl-axis is marked on the left side of the graph;
the y2-axis on the right. These menus may be detached by selecting the dashed rule at the
top of the list. Sample results are shown in the figure at the start of this section.

When mmGraph is first launched, all the axis menus are empty. They are dynamically
built based on the data received by mmGraph. By default, the graph limits and labels are
automatically set based on the data. The x-axis label is set using the selected item data
label and measurement unit (if any). The y-axes labels are the measurement unit of the first
corresponding y-axis item selected.

The Options| Configure... dialog box allows the user to override default settings. To
change the graph title, simply enter the desired title into the Title field. To set the axis
labels, deselect the Auto Label option in this dialog box, and fill in the X Label, Y1 Label
and Y2 Label fields as desired. The axis limits can be set in a similar fashion. In addition,
if an axis limit is left empty, a default value (based on all selected data) will be used. Select
the Auto Scale option to have the axis ranges automatically adjust to track incoming data.

Use the Auto Offset Y1 and Auto Offset Y2 to automatically translate each curve
plotted against the specified axis up or down so that the first point on the curve has a
y-value of zero. This feature is especially useful for comparing variations between different
energy curves, because for these curves one is typically interested in changes is values rather
than the absolute energy value itself.

The size of the margin surrounding the plot region is computed automatically. Larger
margins may be specified by filling in the appropriate fields in the Margin Requests section.
Units are pixels. Requested values smaller than the computed (default) values are ignored.

The initial curve width is determined by the Ow_GraphWin default_curve_width set-
ting in the config/options.tcl and config/local/options.tcl files, following the usual
method of local customization (Sec. 2.3.2). The current curve width can be changed by spec-
ifying the desired width in the Curve Width entry in the Options| Configure... dialog box.
The units are pixels. Long curves will be rendered more quickly, especially on Windows, if
the curve width is set to 1.

As mentioned earlier, mmGraph stores in memory all data it receives. Over the course
of a long run, the amount of data stored can grow to many megabytes. This storage can
be limited by specifying a positive (> 0) value for the Point buffer size entry in the Op-
tions| Configure... dialog box. The oldest records are removed as necessary to keep the
total number of records stored under the specified limit. A zero value for Point buffer size
is interpreted as no limit. (The storage size of an individual record depends upon several
factors, including the number of items in the record and the version of Tcl being used.)
Data erasures may not be immediately reflected in the graph display. At any time, the point
buffer storage may be completely emptied with the Options|clear Data command. The
Options|Stop Autosave selection will turn off the auto save feature, if currently active.

Also on this menu is Options|Rescale, which autoscales the graph axis limits from the
selected data. This command ignores but does not reset the Auto Scale setting in the
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Options| Configure... dialog box. The Rescale command may also be invoked by pressing
the Home key.

The Options|Break Curves item inserts a curve break record into the point buffer,
causing a break in each curve after the current point. This option may be useful if mmGraph
is being fed data from multiple sources.

The Options|Key selection toggles the key (legend) display on and off. The key may
also be repositioned by dragging with the left mouse button. If curves are selected off both
the y1 and y2 menus, then a horizontal line in the key separates the two sets of curves, with
the labels for the y1 curves on top.

If the Options|Auto Reset selection is enabled, then when a new table is detected all
previously existing axis menu labels that are not present in the column list of the new data
set are deleted, along with their associated data. mmGraph will detect a new table when
results from a new problem are received, or when data is input from a file. If Options|Auto
Reset is not selected, then no data or axis menu labels are deleted, and the axes menus will
show the union of the old column label list and the new column label list. If the axes menus
grow too long, the user may manually apply the File| Reset command to clear them.

The last command on the options menu is Options|Smooth. If smoothing is disabled,
then the data points are connected by straight line segments. If enabled, then each curve
is rendered as a set of parabolic splines, which do not in general pass through the data
points. This is implemented using the ——smooth 1 option to the Tcl canvas create line
command; see that documentation for details.

A few controls are available only using the mouse. If the mouse pointer is positioned over
a drawn item in the graph, holding down the Control key and the left mouse button will
bring up the coordinates of that point, with respect to the yl-axis. Similarly, depressing the
Control key and the right mouse button, or alternatively holding down the Control+4Shift
keys while pressing the left mouse button will bring up the coordinates of the point with
respect to the y2-axis. The coordinates displayed are the coordinates of a point on a drawn
line, which are not necessarily the coordinates of a plotted data point. (The data points are
plotted at the endpoints of each line segment.) The coordinate display is cleared when the
mouse button is released while the Control key is down.

One vertical and one horizontal rule (line) are also available. Initially, these rules are
tucked and hidden against the left and bottom graph axes, respectively. Either may be
repositioned by dragging with the left or right mouse button. The coordinates of the cursor
are displayed while dragging the rules. The displayed y-coordinate corresponds to the y1-
axis if the left mouse button is used, or the y2-axis if the right mouse button or the Shift
key with the left mouse button are engaged.

The graph extents may be changed by selecting a “zoom box” with the mouse. This is
useful for examining a small portion of the graph in more detail. This feature is activated
by clicking and dragging the left or right mouse button. A rectangle will be displayed that
changes size as the mouse is dragged. If the left mouse button is depressed, then the x-axis
and yl-axis are rescaled to just match the extents of the displayed rectangle. If the right
mouse button, or alternatively the shift key + left mouse button, is used, then the x-axis and
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y2-axis are rescaled. An arrow is drawn against the rectangle indicating which y-axis will
be rescaled. The rescaling may be canceled by positioning the mouse pointer over the initial
point before releasing the mouse button. The zoom box feature is similar to the mouse zoom
control in the mmDisp (Sec. 13) application, except that here there is no “un-zooming”
mouse control.

The PageUp and PageDown keys may also be used to zoom the display in and out. Use
in conjuction with the Shift key to jump by larger steps, or with the Control key for finer
control. The Options|Rescale command or the Options| Configure. .. dialog box may also
be used to reset the graph extents.

If mmGraph is being used to display data from a running solver, and if Auto Scale is
selected in the Options|Configure. .. dialog box, then the graph extents may be changed
automatically when a new data point is received. This is inconvenient if one is simultaneously
using the zoom feature to examine some portion of the graph. In this case, one might prefer
to disable the Auto Scale feature, and manually pan the display using the keyboard arrow
keys. Each key press will translate the display one half frame in the indicated direction.
The Shift key used in combination with an arrow keys double the pan step size, while the
Control key halves it.

The menu selection File|Reset reinitializes the mmGraph application to its original
state, releasing all data and clearing the axis menus. The menu selection File | Exit terminates
the application. The menu Help provides the usual help facilities.

Detalils

The axes menus are configured based on incoming data. As a result, these menus are initially
empty. If a graph widget is scheduled to receive data only upon control point or stage done
events in the solver, it may be a long time after starting a problem in the solver before the
graph widget can be configured. Because mmGraph keeps all data up to the limit imposed
by the Point buffer size, data loss is usually not a problem. Of more importance is the
fact that automatic data saving can not be set up until the first data point is received. As a
workaround, the solver initial state may be sent interactively as a dummy point to initialize
the graph widget axes menus. Select the desired quantities off the axes menus, and use
the Options|clear Data command to remove the dummy point from mmGraph’s memory.
The File|Save As... dialog box may then be used—with the Auto Save option enabled—to
write out an empty table with proper column header information. Subsequent data will be
written to this file as they arrive.
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13 Vector Field Display: mmDisp
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Overview

The application mmDisp displays two-dimensional slices of three-dimensional spatial dis-
tributions of vector fields. mmDisp currently supports display of 1D (i.e., scalar) and 3D
vector data. It can load field data from files in a variety of formats, or it can accept data from
client applications, such as a running solver. mmDisp offers a rich interface for controlling
the display of vector field data, and can also save the data to a file or produce PostScript
print output.

Launching

mmDisp may be started either by selecting the mmDisp button on mmLaunch, or from
the command line via

tclsh oommf.tcl mmDisp [standard options] [-config file] \
[-net <0|1>] [filename]

-config file User configuration file that specifies default display parameters. This file is
discussed in detail below.

-net <0|1> Disable or enable a server which allows the data displayed by mmDisp to be
updated by another application. By default, the server is enabled. When the server is
disabled, mmDisp may only input data from a file.
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If a filename is supplied on the command line, mmDisp takes it to be the name of a file
containing vector field data for display. That file will be opened on startup.

Inputs

Input to mmDisp may come from either a file or from a client application (typically a
running solver), in any of the vector field formats described in Sec. 19. Other file formats
can also be supported if a translation filter program is available.

Client applications that send data to mmDisp control the flow of data. The user,
interacting with the mmDisp window, determines how the vector field data are displayed.

File input is initiated through the File|Open... dialog box. Several example files are
included in the OOMMEF release in the directory app/mmdisp/examples. When the Browse
button is enabled, the “Open File” dialog box will remain open after loading a file, so
that multiple files may be displayed in sequence. The Auto configuration box determines
whether the vector subsampling, data scale, zoom and slice settings should be determined
automatically (based on the data in the file and the current display window size), or whether
their values should be held constant while loading the file.

mmDisp permits local customization allowing for automatic translation from other file
formats into one of the vector field formats (Sec. 19) that mmDisp recognizes. When loading
a file, mmDisp compares the file name to a list of extensions. An example extension is .gz.
The assumption is that the extension identifies files containing data in a particular format.
For each extension in the list, there is a corresponding translation program. mmDisp calls
on that program as a filter which takes data in one format from standard input and writes
to standard output the same data in one of the formats supported by mmDisp. In its
default configuration, mmDisp recognizes the patterns .gz, .z, and .zip, and invokes
the translation program gzip -dc to perform the “translation.” In this way, support for
reading compressed files is “built in” to mmDisp on any platform where the gzip program
is installed.

There are two categories of translations supported: decompression and format conversion.
Both are modified by the usual method of local customization (Sec. 2.3.2). The command
governing decompression in the customization file is of the form

Oc_Option Add * Nb_InputFilter decompress {{.gz .zip} {gzip -dc}}

The final argument in this command is a list with an even number of elements. The first
element of each pair is the filename extension. The second element in each pair is the
command line for launching the corresponding translation program. To add support for
bzip2 compressed files, change this line to

Oc_Option Add * Nb_InputFilter decompress \
{{.gz .zip} {gzip -dc} .bz2 bunzip2}

This option also affects other applications such as mmGraph that support “on-the-fly”
decompression. In all cases the decompression program must accept compressed input on
standard input and write the decompressed output to standard output.
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There is also input translation support for filters that convert from foreign (i.e., non-
OOMMEF) file formats. For example, if a program foo were known to translate a file format
identified by the extension .bar into the OVF file format, that program could be made
known to mmDisp by setting the customization command:

Oc_Option Add * Nb_InputFilter ovf {.bar foo}

This assumes that the program foo accepts input of the form .bar on standard input and
writes the translated results to standard output.

Outputs

The vector field displayed by mmDisp may be saved to disk via the File| Save As. .. dialog
box. The output is in the OVF format (Sec. 19.2). The OVF file options may be set by
selecting the appropriate radio buttons in the OVF File Options panel. The Title and Desc
fields may be edited before saving. Enabling the Browse button allows for saving multiple
files without closing the “Save File” dialog box.

The File|Print. .. dialog is used to produce a PostScript file of the current display. On
Unix systems, the output may be sent directly to a printer by filling the Print to: entry
with the appropriate pipe command, e.g., |1pr. (The exact form is system dependent.) The
other print dialog box options are described in the configuration files section below.

The File| Write config. .. dialog allows one to save to disk a configuration file holding
the current display parameters. This file can be used to affect startup display parameters,
or used as input to the avf2ppm (Sec. 16.4) and avf2ps (Sec. 16.5) command line utilities
that convert files from the OVF format into bitmap images and PostScript printer files,
respectively. (mmDisp does not provide direct support for writing bitmap files.) Details of
the configuration file are discussed below.

Controls

The menu selection File|Clear clears the display window. The menu selection File|Exit
terminates the mmDisp application. The menu Help provides the usual help facilities.
The View menu provides high-level control over how the vector field is placed in the
display window. The menu selection View | Wrap Display resizes the display window so that
it just contains the entire vector field surrounded by a margin. View |Fill Display resizes the
vector field until it fills the current size of the display window. If the aspect ratio of the display
window does not match the aspect ratio of the vector field, a larger than requested margin
appears along one edge to make up the difference. View|Center Display translates the
vector field to put the center of view at the center of the display window. View | Rotate ccw
and View|Rotate cw rotate the display one quarter turn counter-clockwise and clockwise
respectively. If the display size is not locked (see Options| Lock size below), then the display
window also rotates, so that the portion of the vector field seen and any margins are preserved
(unless the display of the control bar forces the display window to be wider). View|reDraw
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allows the user to invoke a redrawing of the display window. The View|Viewpoint tearable
submenu supports rotation of the vector field out of the plane of the display, so that it may
be viewed from along a different axis.

The menu selection Options|Configure. .. brings up a dialog box through which the
user may control many features of the vector field display. Vectors in the vector field may be
displayed as arrows, pixels, or both. The Arrow and Pixel buttons in the Plot type column
on the left of the dialog box enable each type of display.

Columns 2-4 in the Configure dialog box control the use of color. Both arrows and
pixels may be independently colored to indicate some quantity. The Color Quantity column
controls which scalar quantity the color of the arrow or pixel represents. Available color
quantities include vector z, y, and z components, total vector magnitude, slice depth, and
angles as measured in-plane from a fixed axis. On regularly gridded data the vector field
divergence is also available for display.

The assignment of a color to a quantity value is determined by the Colormap selected.
Colormaps are labeled by a sequence of colors that are mapped across the range of the
selected quantity. For example, if the “Red-Black-Blue” colormap is applied to the Color
Quantity “z”, then vectors pointing into the zy-plane (z < 0) are colored red, those lying
in the plane (z = 0) are colored black, and those pointing out of the plane (z > 0) are
colored blue. Values between the extremes are colored with intermediate colors, selected
using a discretization determined by the # of Colors value. This value governs the use of
potentially limited color resources, and can be used to achieve some special coloring effects.
(Note: The in-plane angle quantities are generally best viewed with a colormap that begins
and ends with the same color, e.g., “Red-Green-Blue-Red.”) The ordering of the colormap
can be reversed by selecting the Reverse checkbox. For example, this would change the
“Red-Black-Blue” colormap to effectively “Blue-Black-Red.”

Below the Reverse checkbutton in the pixel plot type row is a Opaque checkbutton. If
this is selected then arrows below the top row in the pixel slice range (see slice discussion
below) will be hidden by the pixel object. If disabled, then the pixel object is translucent,
so objects further below are partially visible.

When there are many vectors in a vector field, a display of all of them may be more con-
fusing than helpful. The Subsample column allows the user to request that only a sampling
of vectors from the vector field be displayed. The Subsample value is roughly the number of
vectors along one spatial dimension of the vector field which map to a single displayed vector
(arrow or pixel). Each vector displayed is an actual vector in the vector field—the selection
of vectors for display is a sampling process, not an averaging or interpolation process. The
subsample rates for arrows and pixels may be set independently. A subsample rate of 0 is
interpreted specially to display all data. (This is typically much quicker than subsampling
at a small rate, e.g., 0.1.)

The length of an arrow represents the magnitude of the vector field. All arrows are
drawn with a length between zero and “full-scale.” By default, the full-scale arrow length
is computed so that it covers the region of the screen that one displayed vector is intended
to represent, given the current subsample rate. Following this default, arrows do not signifi-
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cantly overlap each other, yet all non-zero portions of the vector field have a representation
in the display. Similarly, pixels are drawn with a default size that fills an area equal to
the region of the screen one pixel is intended to represent, given the pixel subsample rate.
The Size column allows the user to (independently) override the default size of pixels and
full-scale arrows. A value of 1 represents the default size. By changing to a larger or smaller
Size value, the user may request arrows or pixels larger or smaller than the default size.

Below the Arrow and Pixel Controls are several additional controls. The Data Scale
entry affects the data value scaling. As described above, all arrows are displayed with length
between zero and full-scale. The full-scale arrow length corresponds to some scalar value of
the magnitude of the vector field. The Data Scale entry allows the user to set the value at
which the drawn arrow length goes full-scale. Any vectors in the vector field with magnitude
equal to or greater than the data scale value will be represented by arrows drawn at full scale.
Other vectors will be represented by shorter arrows with length determined by a linear scale
between zero and the data scale value. Similarly, the data scale value controls the range
of values spanned by the colormap used to color pixels. The usual use of the Data Scale
entry is to reduce the data scale value so that more detail can be seen in those portions of
the vector field which have magnitude less than other parts of the vector field. If the data
scale value is increased, then the length of the arrows in the plot is reduced accordingly.
If the data scale value is decreased, then the length of the arrows is increased, until they
reach full-scale. An arrow representing a vector with magnitude larger than the data scale
value may be thought of as being truncated to the data scale value. The initial (default)
data scale value is usually the maximum vector magnitude in the field, so at this setting
no arrows are truncated. Entering O into the data scale box will cause the data scale to be
reset to the default value. (For OVF files (Sec. 19.2), the default data scale value is set from
the ValueRangeMaxMag header line. This is typically set to the maximum vector magnitude,
but this is not guaranteed.) The data scale control is intended primarily for use with vector
fields of varying magnitude (e.g., H-fields), but may also be used to adjust the pixel display
contrast for any field type.

The Zoom entry controls the spatial scaling of the display. The value roughly corresponds
to the number of pixels per vector in the fully-sampled vector field. (This value is not affected
by the subsampling rate.)

The Margin entry specifies the margin size, in pixels, to be maintained around the vector
field.

The next row of entry boxes control slice display. Slice selection allows display of that
subset of the data that is within a specified distance of a plane running perpendicular to
the view axis. The location of that plane with respect to the view axis is specified in the
X-slice center, Y-slice center or Z-slice center entry, depending on the current view axis.
The thickness of the slice may be varied separately for arrow and pixel displays, as specified
in the next two entry boxes. The slice span boxes interpret specially the following values: 0
resets the slice thickness to the default value, which is usually the thickness of a single cell.
Any negative value sets the slice thickness to be the full thickness of the mesh. Values for all
of the slice control entries are specified in the fundamental mesh spatial unit, for example,
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meters. (Refer to the vector field file format (Sec. 19) documentation for more on mesh
spatial units.)

Below the slice contols are controls to specify whether or not a bounding polygon is
displayed, and the background color for the display window.

No changes made by the user in the Options| Configure. .. dialog box affect the display
window until either the Apply or OK button is selected. If the OK button is selected, the
dialog box is also dismissed. The Close button dismisses the dialog without changing the
display window.

The next item under the Options menu is a checkbutton that toggles the display of a
control bar. The control bar offers alternative interfaces to some of the operations available
from the Options|Configure... dialog box and the View menu. On the left end of the
control bar is a display of the coordinate axes. These axes rotate along with the vector field
in the display window to identify the coordinate system of the display, and are color coded
to agree with the pixel (if active) or arrow coloring. A click of the left mouse button on the
coordinate axes causes a counter-clockwise rotation. A click of the right mouse button on
the coordinate axes causes a clockwise rotation.

To the right of the coordinate axes are two rows of controls. The top row allows the
user to control the subsample rate and size of displayed arrows. The subsample rate may be
modified either by direct entry of a new rate, or by manipulation of the slider. The second
row controls the current data scale value and zoom (spatial magnification). A vertical bar
in the slider area marks the default data scale value. Specifying O for the data scale value
will reset the data scale to the default value.

The spatial magnification may be changed either by typing a value in the Zoom box of
the control bar, or by using the mouse inside the display window. A click and drag with
the left mouse button displays a red rectangle that changes size as the mouse is dragged.
When the left mouse button is released, the vector field is rescaled so that the portion of
the display window within the red rectangle expands until it reaches the edges of the display
window. Both dimensions are scaled by the same amount so there is no aspect distortion of
the vector field. Small red arrows on the sides of the red rectangle indicate which dimension
will expand to meet the display window boundaries upon release of the left mouse button.
After the rescaling, the red rectangle remains in the display window briefly, surrounding the
same region of the vector field, but at the new scale.

A click and drag with the right mouse button displays a blue rectangle that changes size
as the mouse is dragged. When the right mouse button is released, the vector field is rescaled
so that all of the vector field currently visible in the display window fits the size of the blue
rectangle. Both dimensions are scaled by the same amount so there is no aspect distortion of
the vector field. Small blue arrows on the sides of the blue rectangle indicate the dimension
in which the vector field will shrink to exactly transform the display window size to the blue
rectangle size. After the rescaling, the blue rectangle remains in the display window briefly,
surrounding the same region of the vector field, now centered in the display window, and at
the new scale.

When the zoom value is large enough that a portion of the vector field lies outside the
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display window, scrollbars appear that may be used to translate the vector field so that
different portions are visible in the display window. On systems that have a middle mouse
button, clicking the middle button on a point in the display window translates the vector
field so that the selected point is centered within the display window.

mmDisp remembers the previous zoom value and data scale values. To revert to the
previous settings, the user may hit the ESC key. This is a limited “Undo” feature.

Below the data scale and zoom controls in the control bar is the slice center selection
control. This will be labeled Z-slice, X-slice, or Y-slice, depending on which view axis is
selected. The thickness of the slice can be set from the Options| Configure. .. dialog box.

The final item under the Options menu is the Options|Lock size checkbutton. By
default, when the display is rotated in-plane, the width and height of the viewport are
interchanged so that the same portion of the vector field remains displayed. Selecting the
Options|Lock size checkbutton disables this behavior, and also other viewport changing
operations (e.g., display wrap).

Several keyboard shortcuts are available as alternatives to menu- or mouse-based opera-
tions. (These are in addition to the usual keyboard access to the menu.) The effect of a key
combination depends on which subwindow of mmDisp is active. The TAB key may be used
to change the active subwindow. The SHIFT-TAB key combination also changes the active
subwindow, in reverse order.

When the active subwindow is the display window, the following key combinations are
active:

e CTRL-o — same as menu selection File|Open. ..

e CTRL-s — same as menu selection File|Save as. ..

e CTRL-p — same as menu selection File|Print. ..

e CTRL-c — same as menu selection Options|Configure. ..

e CTRL-v — launches viewpoint selection menu, View | Viewpoint
e CTRL-w — same as menu selection View | Wrap Display

e CTRL-f — same as menu selection View|Fill Display

e HOME — First fill, then wrap the display.

e CTRL-space — same as menu selection View | Center Display
e CTRL-r — same as menu selection View | Rotate ccw

e SHIFT-CTRL-r — same as menu selection View | Rotate cw

e INSERT — decrease arrow subsample by 1

e DEL — increase arrow subsample by 1
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e SHIFT-INSERT — decrease arrow subsample by factor of 2
e SHIFT-DEL — increase arrow subsample by factor of 2

e PAGEUP - increase the zoom value by a factor of 1.149

e PAGEDOWN — decrease the zoom value by a factor of 1.149

e SHIFT-PAGEUP — increase the zoom value by factor of 2

e SHIFT-PAGEDOWN — decrease the zoom value by factor of 2
e ESC — revert to previous data scale and zoom values

When the active subwindow is the control bar’s coordinate axes display, the following
key combinations are active:

e LEFT — same as menu selection View | Rotate ccw
e RIGHT — same as menu selection View | Rotate cw

When the active subwindow is any of the control bar’s value entry windows — arrow
subsample, size, data scale or zoom, the following key combinations are active:

e ESC — undo uncommitted value (displayed in red)
e RETURN — commit entered value

When the active subwindow is in any of the control bar’s sliders—arrow subsample, data
scale or slice—the following key combinations are active:

e LEFT — slide left (decrease value)

e RIGHT - slide right (increase value)

e ESC — undo uncommitted value (displayed in red)
e RETURN — commit current value

When any of the separate dialog windows are displayed (e.g., the File|Open... or
Options| Configure. .. dialogs), the shortcut CTRL-. (control-period) will raise and transfer
keyboard focus back to the root mmDisp window.
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Configuration files

The various initial display parameters (e.g., window size, orientation, colormap) are set by
configuration files. The default configuration file

oommf/app/mmdisp/scripts/mmdisp.config
is read first, followed by the local customization file,
oommf/app/mmdisp/scripts/local/mmdisp.config

if it exists. Lastly, any files passed as —config options on the command line are input. The
files must be valid Tcl scripts, the main purpose of which is to set elements of the plot_config
and print_config arrays, as illustrated in the default configuration file (Fig. 4, page 149).
(See the Tcl documentation for details of the array set command.)

There are several places in the configuration file where colors are specified. Colors may
be represented using the symbolic names in oommf/config/colors.config, in any of the
Tk hexadecimal formats, e.g., #RRGGBB, or as a shade of gray using the format “grayD” (or
“greyD”), where D is a decimal integer from 0-100, inclusive. Examples in the latter two
formats are #FFFFO0O for yellow, gray0 for black, and gray100 or #FFFFFF for white.

Refer to the default configuration file as we discuss each element of the plot_config
array:

arrow,status Set to 1 to display arrows, 0 to not draw arrows.

arrow,autosample If 1, then ignore the value of arrow,subsample and automatically de-
termine a ‘“reasonable” subsampling rate for the arrows. Set to 0 to turn off this
feature.

arrow,subsample If arrow,autosample is 0, then subsample the input vectors at this rate
when drawing arrows. A value of 0 for arrow,subsample is interpreted specially to
display all data.

arrow,colormap Select the colormap to use when drawing arrows. Should be one of the
strings specified in the Colormap section of the Options|Configure. .. dialog.

arrow,colorcount Number of discretization levels to use from the colormap. A value of
zero will color all arrows with the first color in the colormap.

arrow,quantity Scalar quantity the arrow color is to represent. Supported values include x,
y, z, xy—angle, xz-angle, yz-angle, and slice. The Options|Configure... dialog
presents the complete list of allowed quantities, which may be image dependent.

arrow,colorreverse The colorreverse value should be 1 or 0, signifying to reverse or
not reverse, respectively. If reverse is selected, then the colormap ordering is inverted,
changing for example Blue-White-Red into Red-White-Blue. This corresponds to the
Reverse control in the Options| Configure. . ..
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arrow,colorphase The phase is a real number between -1 and 1 that provides a translation
in the selected colormap. For the xy-angle, xz-angle and yz-angle color quantities,
this displays as a rotation of the colormap, e.g., setting colorphase to 0.333 would
effectively change the Red-Green-Blue-Red colormap into Green-Blue-Red-Green.
For the other color quantities, it simply shifts the display band, saturating at one end.
For example, setting colorphase to 0.5 changes the Blue-White-Red colormap into
White-Red-Red. If both inversion and phase adjustment are requested, then inversion
is applied first.

arrow,size Size of the arrows relative to the default size (represented as 1.0).

pixel,... Most of the pixel configuration elements have analogous arrow configuration ele-
ments, and are interpreted in the same manner. The exception is the pixel,opaque
element, which is discussed next. Note too that the auto subsampling rate for pixels
is considerably denser than for arrows.

pixel,opaque If the opaque value is 1, then the pixel is drawn in a solid manner, concealing
any arrows which are drawn under it. If opaque is 0, then the pixel is drawn only
partially filled-in, so objects beneath it can still be discerned.

misc,background Specify the background color.

misc,drawboundary If 1, then draw the bounding polygon, if any, as specified in the input
vector field file.

misc,boundarycolor String specifying the bounding polygon color, if drawn.
misc,boundarywidth Width of the bounding polygon, in pixels.
misc,margin The size of the border margin, in pixels.

misc,defaultwindowwidth, misc,defaultwindowheight Width and height of initial dis-
play viewport, in pixels.

misc,width, misc,height Width and height of displayed area. This will be less than
the viewport dimensions if scrollbars are present. These values are ignored during
mmDisp initialization, but are written out by the File| Write config... command as
a convenience for the avf2ppm (Sec. 16.4) command line utility.

misc,rotation Counterclockwise rotation in degrees; either 0, 90, 180 or 270.

misc,zoom Scaling factor for the display. This is the same value as shown in the “zoom”
box in the mmDisp control bar, and corresponds roughly to the number of pixels per
vector in the (original, fully-sampled) vector field. If set to zero, then the scaling is set
so the image, including margins, just fits inside the viewport dimensions.
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misc,datascale Scale for arrow size and colormap ranges; equivalent to the Data Scale
control. In general, this should be a positive real value, but a zero or empty value will
set the scaling to its default setting.

misc,centerpt If specified, the value should be a three item list of real numbers specifying
the center of the display, {x y z}, in file mesh units (e.g., meters).

misc,relcenterpt If specified, the value should be a three item list of real numbers in
the range [0, 1] specifying the center of the display in relative coordinates. If both
misc,relcenterpt and misc,centerpt are defined, then misc, centerpt takes prece-
dence.

viewaxis Select the view axis, which should be one of +z, -z, +y, -y, +x, or —x. This option
is equivalent to the View | Viewpoint menu control.

viewaxis,xarrowspan, viewaxis,yarrowspan, viewaxis,zarrowspan Specifies the thick-

ness of the arrow display slice, for the corresponding view. For example, if the view
axis is +z or -z, then only viewaxis,zarrowspan is active. The value for each element
should be either a real value or an empty string. If the value is zero or an empty string,
then the thickness is set to the default value, which is typically the thickness of a single
cell. If the value is positive, then it specifies the slice range in file mesh units, e.g., in
meters. Lastly, if the value is negative, then the slice is set to the entire thickness of
the mesh in that view direction.

viewaxis,xpixelspan, viewaxis,ypixelspan, viewaxis,zpixelspan Identical interpreta-
tion and behavior as the corresponding arrow span elements, but with regards to pixel
display.

The print_config array controls printing defaults, as displayed in the File|Print...
dialog box:

orient Paper orientation, either landscape or portrait.
paper Paper type: letter, legal, A4 or A3.

hpos, vpos The horizontal and vertical positioning on the printed page. Valid values for
hpos are left, center, or right, and for vpos are top, center, or bottom.

units Units that the margin and print area dimensions are measured in; either in or cm.
tmargin, Imargin Top and left margin size, measured in the selected units.

pwidth, pheight Output print area dimensions, width and height, measured in the selected
units. The output will be scaled to meet the more restrictive dimension. In particular,
the x/y-scaling ratio remains 1:1.
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croptoview Boolean value, either 0 or 1. If 1 (true), then the print output is cropped to
display only that portion of the vector field that is visible in the display window. If 0,
then the display is ignored and the output is scaled so that the entire vector field is
printed.

If any of the above elements are set in multiple configuration files, then the last value
read takes precedence.

Details

The selection of vectors for display determined by the Subsample value differs depending
on whether or not the data lie on a regular grid. If so, Subsample takes integer values and
determines the ratio of data points to displayed points. For example, a value of 5 means that
every fifth vector on the grid is displayed. This means that the number of vectors displayed
is 25 times fewer than the number of vectors on the grid.

For an irregular grid of vectors, an average cell size is computed, and the Subsample takes
values in units of 0.1 times the average cell size. A square grid of that size is overlaid on the
irregular grid. For each cell in the square grid, the data vector from the irregular grid closest
to the center of the square grid cell is selected for display. The vector is displayed at its true
location in the irregular grid, not at the center of the square grid cell. As the subsample
rate changes, the set of displayed vectors also changes, which can in some circumstances
substantially change the appearance of the displayed vector field.

Known Bugs

The slice selection feature does not work properly with irregular meshes.

148



array set plot_config {

arrow, status 1 misc,background white
arrow,autosample 1 misc,drawboundary 1
arrow,subsample 0 misc,boundarycolor black
arrow, colormap Red-Black-Blue misc,boundarywidth 1
arrow,colorcount 256 misc,margin 10

arrow,quantity z

arrow,colorreverse O

arrow,colorphase 0 misc,width
1

misc,defaultwindowwidth 640
misc,defaultwindowheight 480

0
arrow,size misc,height 0
misc,rotation 0
pixel,status 0 misc,zoom 0
pixel,autosample 1 misc,datascale 0
pixel,subsample 0 misc,relcenterpt {0.5 0.5 0.5}
pixel,colormap Blue-White-Red
pixel,colorcount 256 viewaxis +z
pixel,quantity X viewaxis,xarrowspan {
pixel,colorreverse 0O viewaxis,xpixelspan {
pixel,colorphase O viewaxis,yarrowspan {
pixel,size 1 viewaxis,ypixelspan {
pixel,opaque 1 viewaxis,zarrowspan {
viewaxis,zpixelspan {

b

array set print_config {

orient
paper
hpos
vpos
units

landscape tmargin 1.0
letter Imargin 1.0
center pwidth 6.0
center pheight 6.0
in croptoview 1

Figure 4: Contents of default configuration file mmdisp.config.
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14 Data Archive: mmArchive

EF <6> mmArchive E\@

File Options Help

[2013/10/23 18:33:02] STATUS Opened C:/Users/darius/oommf/app/oxs/examples/ =«
stdprobl.odt

[2013/10/23 18:33:51] STATUS Wrote scalar field C:/Users/darius/ocommf/app/o
xs/examples/stdprobl-0xs UniformExchange-Energy density-00000-0002633.o0ef

[2013/10/23 18:33:51] STATUS Wrote vector field C:/Users/darius/ocommf/app/o
xs/examples/stdprobl-0xs MinDriver-Magnetization-00000-0002633.omf

[2013/10/23 18:33:51] STATUS Wrote vector field C:/Users/darius/ocommf/app/o
xs/examples/stdprobl-0xs Demag-Field-00000-0002633.chf

[2013/10/23 18:34:03] STATUS Wrote scalar field C:/Users/darius/ocommf/app/o
xs/examples/stdprobl-0Oxs UniformExchange-Energy density-00001-0003395.cef

[2013/10/23 18:34:03] STATUS Wrote vector field C:/Users/darius/ocommf/app/o
xs5/examples/stdprobl-0xs MinDriver-Magnetization-00001-0003359.omf _:J

Overview

The application mmArchive provides automated vector field and data table storage ser-
vices. Although mmDisp (Sec. 13) and mmGraph (Sec. 12) are able to save such data
under the direction of the user, there are situations where it is more convenient to write data
to disk without interactive control.

mmaA-rchive does not present a user interface window of its own, but like the Oxs
solvers (Sec. 7) relies on mmLaunch (Sec. 6) to provide an interface on its behalf. Because
mmArchive does not require a window, it is possible on Unix systems to bring down the
X (window) server and still keep mmArchive running in the background.

Launching

mmArchive may be started either by selecting the mmArchive button on mmLaunch by
Oxsii/Boxsi via a Destination command in a MIF 2 file (Sec. 17.3), or from the command
line via

tclsh oommf.tcl mmArchive [standard options]

When the mmArchive button of mmLaunch is invoked, mmArchive is launched with
the -tk 0 option. This allows mmArchive to continue running if the X window server is
killed. The -tk 1 option is useful only for enabling the ~console option for debugging.

As noted above, mmArchive depends upon mmLaunch to provide an interface. The
entry for an instance of mmArchive in the Threads column of any running copy of mm-
Launch has a checkbutton next to it. This button toggles the presence of a user interface
window through which the user may control that instance of mmArchive.
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Inputs

mmA-rchive accepts vector field and data table style input from client applications (typically
running solvers) on its network (socket) interface.

Outputs

The client applications that send data to mmArchive control the flow of data. mmArchive
copies the